

TABLE OF CONTENTS

- Stormwater Checklist
- USGS Topographic Locus Map
- FEMA Flood Insurance Rate Maps

I. STORMWATER MANAGEMENT NARRATIVE

- 1.0 Project Summary
- 2.0 Engineering Methods & Standards
- 3.0 Selection of Storm Events
- 4.0 Classification of Soils
- 5.0 Design Points
- 6.0 On Site Pre-Development Watersheds
- 7.0 On Site Post-Development Watersheds
- 8.0 Groundwater Recharge
- 9.0 Water Quality
- 10.0 Summary of Flows at Design Points
- 11.0 Compliance with MA DEP Stormwater Handbook
 - TSS Worksheets
 - Stormceptor Sizing
 - Groundwater Recharge Storage Volumes
 - Water Quality Storage Volumes

II. APPENDICES

- > Appendix A: HYDROCAD Calculations
 - Existing Conditions Pre Development Analysis
 - Proposed Conditions Post Development Analysis
- > Appendix B: Soil Map & Classifications
 - Web Soil Survey, USDA, Natural Resources Conservation Service
- > Appendix C: Stormwater Standards
 - Standard 8: Construction Period Pollution Prevention Plan
 - Standard 9: Long Term Operation & Maintenance Plan
 - Standard 10: Illicit Discharge Statement

III. FIGURES

- ➢ Watershed Plans, Sheets 1 − 2
 - Plan 1 of 2: Pre-Development Watershed Plan
 - Plan 2 of 2: Post-Development Watershed Plan

IV REFERENCES

• Ralph D. Butler Elementary School, 1 Patrick Clark Drive, Avon, Massachusetts, Parking Improvement Plans, Dated: June 18, 2020 By: GCG Associates, Inc.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

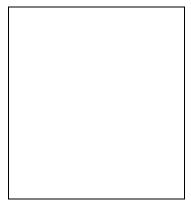
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

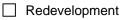

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature



Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

\boxtimes	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	
--------	--

Dynamic Field¹

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Simple Dynamic

Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

\boxtimes	Recharge BMPs have	e been sized to	infiltrate the	Required F	Recharge Volume	э.
-------------	--------------------	-----------------	----------------	------------	-----------------	----

Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum
extent practicable for the following reason:

- Site is comprised solely of C and D soils and/or bedrock at the land surface
- M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
- Solid Waste Landfill pursuant to 310 CMR 19.000
- Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (continued)

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The ½" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited Proj	ect
--------------	-----

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

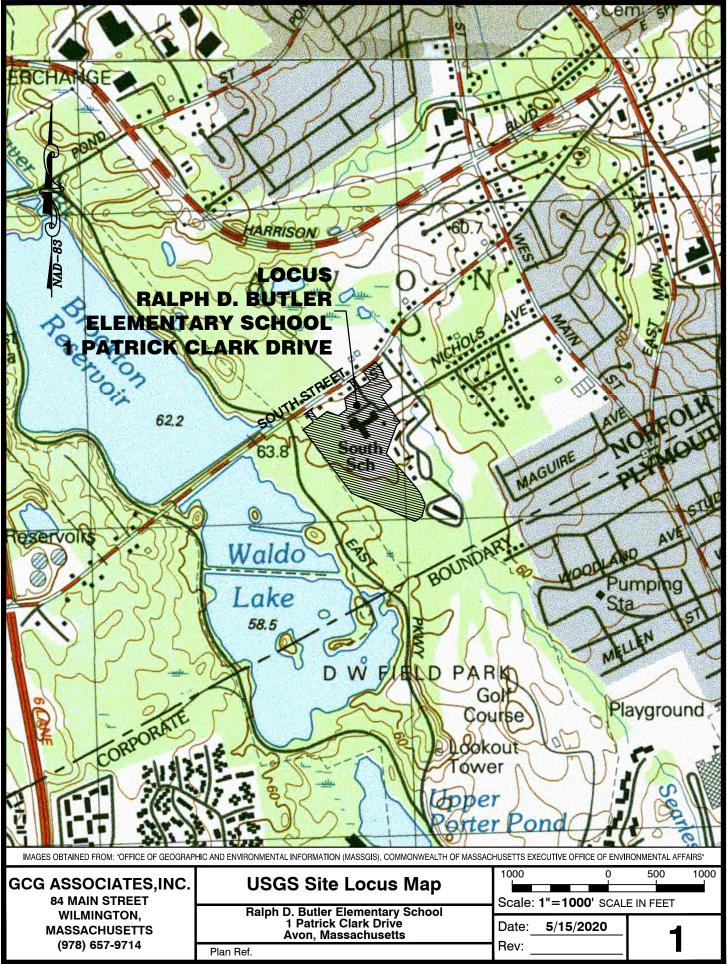
A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

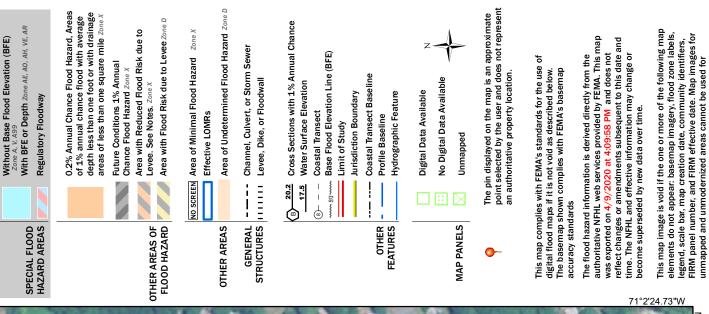

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.


File Name: C:\Users\jgetherall\Documents\1983\1983-COVER-LOCUS-1.dwg Saved 4/27/2020 4:41 PM Plotted: Apr 29, 2020 10:07:45am Tab: 11x8.5P-LOCUS Plot Style: GCG-2018.ctb Plotted By: John Getherall

National Flood Hazard Layer FIRMette

Legend

AREA OF MINIMAL FLOOD HAZARD

Town of Avon

250231

Zone A

Zone A

500

250

regulatory purposes.

42°6'42.83"

W"<u>91.2'5</u>'17

42°7'9.52"N

1.0 PROJECT SUMMARY

Existing Site

The existing site is the location of the Butler Elementary School and two small administration buildings and is located at Patrick Clark Drive in Avon, Massachusetts. The property is identified on the Assessors Map C3-2 Lot 15, consists of 28.3 Acres and owned by the Town of Avon. The property contains a paved driveway with a drop-off area and has 68 marked parking spaces. An existing tennis court is also used for additional parking. The property slopes from South street and partially drains easterly towards the existing wetlands and partially drains westerly towards the existing headwall.

The site has an existing on-site storm drain system. There is a catch basin in the east side parking area and it is connected in a series of additional catch basins and then discharges to a head wall in the west side of the site.

The is a septic system in the rear of the building and the site is serviced by the municipal water system.

In 2019 the Town of Avon acquired the 144 and 156 South Street properties. The properties were owned by a single entity and is the site of an old unused church and accessory building. The property contains a driveway and parking lot. The property slopes from South Street and onto the Butler Elementary School property. The property contains no visible drainage structures.

The total area of all three properties is 29.43 acres. Refer to the attached USGS Topographic Map and the Cover Sheet of the drawings for project location.

Proposed Work

The Avon Public School District is submitting plans and supporting documents for a proposed parking lot improvement project. The project will include a revised driveway, parking area, sidewalks and curbing. The new design will improve school bus access and add 101 additional marked parking spaces. The 144 and 156 South Street properties will be used for an additional driveway that will improve traffic flow for parents and safety for the students. The existing church and driveway will be demolished.

The project will add an additional 25750+/- S.F. of impervious area. The increased stormwater runoff will be directed into 2 separate infiltration basins. Both basins have two forebays in series for water quality improvement prior to discharging in the basins. The catch basin on the east side of the parking will be converted to a drain manhole and an inlet pipe will be added as an overflow for Infiltration Basin 3. An overflow will be added to Infiltration Basin 4and the runoff will be piped to an existing catch basin that will be converted to a manhole. A water quality device will be added to the existing drain line as the last drain structure prior to discharging out the headwall. There will be a decrease in the stormwater peak flow and volume that flows offsite.

All disturbed areas will be restored the existing conditions. After the site has stabilized the erosion controls will be removed. It is expected that construction will be completed within 90 days after commencing.

2.0 ENGINEERING METHODS & STANDARDS

The existing conditions or pre-drainage calculations were performed using HydroCAD software for Windows. HydroCAD uses the Soil Conservation Service (SCS), time of concentration by TR55 methodology, reach and pond rating by the Storage Indication Method and Manning's Equation, unit Hydrograph Method and the Storage Indication Method for developing the runoff and reservoir routing hydrographs, respectively.

Drainage calculations for the pre- and post-development conditions were performed for the 2, 10, 25 and 100 year Type III, 24 hour storm events. All calculations generated for pre-, and revised post-development conditions can be found in the attached appendices.

The Massachusetts Department of Environmental Protection (MADEP) Stormwater Management Policy standards were observed in the design of the stormwater management system. These standards included limiting post-development peak discharge rates and volumes to the pre-development peak discharge rates and volumes and recharging stormwater runoff to the groundwater.

3.0 SELECTION OF STORM EVENTS

The storm events are based upon 24 hour rainfall from TP-40. Rainfall frequency data has been provided as follows:

Frequency (Years)	Rainfall [24-Hour Event (inches)]
2	3.2
10	4.6
25	5.5
100	6.7

4.0 CLASSIFICATION OF SOILS

Drainage classes have been established based on soil maps provided by U.S. Department of Agriculture Soil Conservation Service. Soil maps and descriptions are part of "Norfolk and Suffolk Counties, MA Survey Area Data: Version 12, September 15, 2016.

On-site soils are classified as:

260B – Sudbury Fine Sandy Loam, 2-8% slopes: HSG B

5.0 DESIGN POINTS

Design points (DPs) are discharge points or lines that convey runoff from the study area via overland flow or through drainage pipes. The pre-development and post-development areas of disturbance drain to two analysis 'Design Points' described as follows and shown on Figures 1 and 2.

School Street Side:

DP-1 A drainage comparison point at a headwall in the south west of the site.

DP-2 A drainage comparison point located the rear of #3 Leo's Lane

6.0 ON-SITE PRE-DEVELOPMENT WATERSHEDS

Existing watersheds are delineated based on topography, physical characteristics and drainage networks within the site limits that collect and direct stormwater towards the DPs. Therefore the total study area for the site/ roadway is 4.74 acres which is divided into two (2) pre-development watersheds below:

- PRE-1 The 177,206 S.F. (4.07 acre) watershed is 47.15% impervious. Runoff travels through the closed drainage system and over land to DP-1, Headwall.
- PRE-2 The 29,358 S.F. (0.67 acre) watershed is 11.2% impervious. Runoff travels overland to DP-2, Rear of #3 Leo's Lane.

7.0 ON-SITE POST-DEVELOPMENT WATERSHEDS

The proposed watersheds are delineated based on topography, physical characteristics and drainage networks within the site limits and collect and direct stormwater towards the DPs. Analysis area is divided into four post development watersheds described below:

- POST-1 The 104,741 S.F. (2.405 acre) watershed is 56.82% impervious. Subcatchment consists of the parking area, lawn and some of the undisturbed portion of watershed area. The runoff is collected in the closed drainage system and is treated by the Water Quality Device prior to discharging at the existing headwall, DP-1.
- POST-2 The 5,577 S.F. (0.128 acre) watershed is 100% impervious. The runoff discharges to the rear of #3 Loe's Lane.
- POST-3 The 42,534 S.F. (0.976 acre) watershed is 50.36% impervious. The new driveway and a portion of the new parking lot is directed into a pre-treatment forebay and then overflows into a second pre-treatment foray and then into Infiltration Basin 3. There is an overflow that connects to the existing closed drainage system.
- POST-4 The 53,718 S.F. (1.233 acre) watershed is 59.50% impervious. The driveway and a portion of the reconstructed parking lot is directed into a pre-treatment forebay and then overflows into a second pre-treatment foray and then into Infiltration Basin 4. There is an overflow that connects to the existing closed drainage system

8.0 **GROUNDWATER RECHARGE – MassDEP Stormwater Handbook Standard 3**

The required recharge volumes are dependent on the soil type and are as follows: 0.6 inches of runoff from impervious areas for hydrologic soil group "A", 0.35 inches of runoff from impervious areas for hydrologic soil group "B" and 0.25 inches of runoff from impervious areas for hydrologic soil group "C" and 0.10 inches of runoff from impervious areas for hydrologic soil group "D". The recharge stage will store runoff for an extended period of time filtering out sediment and pollutants through the infiltration process.

Infiltration basins 3 and 4 are utilized for both recharge and detention capabilities. Collected roadway runoff will be stored within the basins until it can percolate through the bed soils. During more intense storm events, runoff that cannot be stored will flow into the closed drainage system. The infiltration basins have been designed to meet recharge and peak rate/flow attenuation.

RECHARGE VOLUME REQUIRED:

The following calculations demonstrate required volumes and capacity of infiltration chambers provided to accommodate flows from expanded pavement.

Impervious Area Analysis

	Post-Development Impervious Area Pre-Development Impervious Area		= 112,586 S.F. = 86,834 S.F.			
	Increase in Impervious Area	=	= 25,752 S.F			
	Recharge Volume Required					
	Rv = (F) x (newly created impervious area) Where					
	Rv=Required recharge volume (cubic fe F = Target depth factor corresponding t		t) the HSG (F value for type B soils = 0.35)			
	Increase in Impervious Area =25,752 S Rv=0.35 in x 1 ft/12 inch x 25,7					
RECHARGE VOLUME PROVIDED:						
	Volume provided by Infiltration Basin 3	=	= 4,497 C.F.			

(Volume below elevation of 204.88 - See Hydrocad Pond DET3) Volume provided by Infiltration Basin 4 = 3,968 C.F.

(Volume below elevation of 206.10 - See Hydrocad Pond DET4)

Total Storage Provided = 8,465 C.F.

9.0 WATER QUALITY – MassDEP Stormwater Handbook Standard 4

The redevelopment includes measures to treat runoff from impervious areas prior to discharge. New stormwater controls have been incorporated into the design that result in a reduction in annual stormwater pollutant loads from the site. Through the use of structural and non-structural BMPs, the water quality volume from the watersheds contributing to the proposed drainage system will undergo treatment. The following BMPs were selected to treat the average annual TSS load from stormwater runoff under the post development condition. Refer to the TSS Removal Calculations below. As defined by the MADEP Stormwater Management Policy, the water quality volume to be treated is equal to the first flush volume which is equal to the ½" of runoff from impervious areas (or 1" in critical areas).

• Deep Sump Hooded Catch Basins

Stormwater runoff from proposed pavement areas will be directed via curbing and site grading to catch basins with deep sumps and hooded outlets. The catch basins will trap and remove sediment and larger particles from the stormwater and will improve the performance of subsequent BMP's. The sumps will be a minimum of 4' in depth and a regular inspection and cleaning schedule has been proposed to ensure optimal effectiveness. When properly designed and maintained, catch basin and manhole sumps are effective in reducing the sediment and pollutant load in runoff.

Hydrodynamic Separator (STC-2400 Unit)

Hydrodynamic Separators are designed to remove heavy particles, floating debris and hydrocarbons from stormwater. Stormwater enters the system where floatables and oils are separated prior to the clarified stormwater runoff discharging to an outlet pipe. See attached TSS removal worksheets for the TSS rates utilized for these proprietary BMPs.

Sediment Forebay

Sediment Forebay's provide pre-treatment of the impervious area runoff. The forebay slows the velocities of the incoming stormwater and are designed. to be easily accessed for accumulated sediment removal.

Infiltration Basin

Infiltration Basins are stormwater runoff impoundments constructed over impervious soils. They are designed for peak flow attenuation, groundwater recharge and provide 80%TSS removal with adequate pre-treatment.

Water Quality Volume (WQV) – (Standard 4)

Impervious Area Analysis

Increase in Impervious Area	= 25,752 S.F
Post-Development Impervious Area	= 112,586 S.F.
Pre-Development Impervious Area	= 86,834 S.F.

1 inches of the total impervious area. - (MassDEP Stormwater Handbook) Increase in impervious area = 25,752 S.F. x 1''/12'' = 2,146 C.F.

STORAGE VOLUME PROVIDED:

Volume provided by Infiltration Basin 3	= 4,497 C.F.
(Volume below elevation of 204.88 - Se	e Hydrocad Pond DET3)

Volume provided by Infiltration Basin 4 = 3,968 C.F. (Volume below elevation of 205.64 - See Hydrocad Pond DET4)

Total Storage Provided = 8,465 C.F.

Drawdown calculations:

Infiltration Basin 3

Infiltration basin storage volume at elevation 204.88 = 4,497 C.F., pond bottom surface = 1,527 S.F., exfiltration rate 8.27 in/hr (Rawls rate, 1982) Drawdown time = 4,497 C.F./1,527 S.F. = 2.95' x 12" = 35.4"/8.27"/hr = 4.28 hrs < 72 hrs. OK

Infiltration Basin 4

Infiltration basin storage volume at elevation 205.64 = 3,968 C.F., pond bottom surface = 2,363 S.F., exfiltration rate 8.27 in/hr (Rawls rate, 1982) Drawdown time = 3,968 C.F./2,363 S.F. = 1.68' x 12" = 20.16"/8.27"/hr = 2.4 hrs < 72 hrs. OK

Sediment Forebay Sizing

MassDEP Stormwater Handbook (MSH) minimum volume requirement 0.1" of impervious area
 Dedham Drainage & Stormwater Management Design Standards, Table 7 – 7 requires 1" of stormwater runoff from all impervious surface except for roofs.

Forebay #3A sizing

Subcatchment POST-3 Impervious area = 21,115 S.F. Pavement

MSH requirements = 21,115 S.F. x 0.1"/12" = 176 C.F.

Forebay-3A has a storage capacity of 233 C.F. below the riprap spillway at elevation 204.0'. (See HydroCAD Pond 3A Forebay Storage Table)

Forebay-3B has a storage capacity of 222 C.F. below the riprap spillway at elevation 204.0'. (See HydroCAD Pond 3B Storage Table)

Forebays #4A & #4B sizing

Subcatchment POST-4 Impervious area = 31,960 S.F. Pavement

MSH requirements = 31,960 S.F. x 0.1"/12" = 266 C.F.

Forebay-4A has a storage capacity of 272 C.F. below the riprap spillway at elevation 205.20. (See HydroCAD Pond 4A Forebay Storage Table)

Forebay-4B has a storage capacity of 272 C.F. below the riprap spillway at elevation 205.20. (See HydroCAD Pond 4B Storage Table)

10.0 SUMMARY OF FLOWS AT DESIGN POINTS

The Massachusetts Department of Environmental Protection (MADEP) Stormwater Management Standards and the Dedham Drainage and Stormwater Design Standards were used in the design of the stormwater management system. These standards included limiting post-development peak discharge rates to the pre-development peak discharge rates and recharging stormwater runoff to the groundwater.

The Table 1 includes a comparison for pre and post-development runoff values obtained using total peak values from hydrographs in attached calculation.

Table 1

Butler Elementary School Avon, MA

PRE vs. POST Development Conditions							
Storm	DP-1					DP-1	
Event	Discharge Rate (CFS)		Discharge Rate (CFS) Volume (acre-ft)		-ft)		
	Pre-Dev	Post-Dev	Difference		Pre-Dev	Post-Dev	Difference
2	6.59	4.65	-1.94		0.461	0.337	-0.124
10	12.30	8.20	-4.10		0.862	0.643	-0.219
25	15.45	11.55	-3.90		1.089	0.841	-0.248
100	20.24	17.80	-2.44		1.442	1.166	-0.276
Storm		DP-2				DP-2	
Event	Disc	harge Rate	(CFS)		\sim	/olume (acre	-ft)
	Pre-Dev	Post-Dev	Difference		Pre-Dev	Post-Dev	Difference
2	0.51	0.07	-0.44		0.039	0.006	-0.033
10	1.27	0.20	-1.07		0.090	0.016	-0.074
25	1.72	0.28	-1.44		0.121	0.021	-0.100
100	2.45	0.42	-2.03		0.170	0.031	-0.139
						-	
						-	

PRE vs. POST Development Conditions

11.0 COMPLIANCE WITH THE MA DEP STORMWATER HANDBOOK

Per Massachusetts Stormwater Handbook Standard 7: A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3 and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5 and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

This report presents a comparative analysis of the pre-development and post-development hydrologic characteristics of the site, and outlines the proposed measures to mitigate flow, provide groundwater recharge, and improve water quality from the site. The best management practices (BMPs) outlined in this report include measures to meet the municipal and the Massachusetts Department of Environmental Protection (DEP) requirements. Below is a summary of how the design complies with each applicable DEP standard with respect to the Massachusetts Stormwater Handbook Chapter 3 Volume 2 "Checklist for Redevelopment Projects."

<u>Standard 1:</u> No new stormwater conveyances (e.g. outfalls) may discharge untreated directly to or cause erosion in wetlands or waters of the Commonwealth.

The proposed stormwater conveyance system does not include any new *untreated* discharges. The overland and subsurface drainage points will remain consistent with the existing condition.

<u>Standard 2:</u> Stormwater management systems shall be designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates.

Stormwater management systems have been designed so that post-development peak discharge rates do not exceed pre-development peak discharge rates.

<u>Standard 3:</u> Loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration measures including environmentally sensitive site design, low impact development techniques, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge form the post-development site shall approximate the annual recharge from the predevelopment conditions based on soil type. This standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

Stormwater management systems have been designed to accommodate increase in impervious area so the loss of annual recharge to groundwater shall be eliminated or minimized through the use of infiltration basins, stormwater best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from predevelopment conditions based on soil type. This standard is met as the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusetts Stormwater Handbook.

<u>Standard 4</u>: Stormwater management systems shall be designed to remove 80% of the average annual post construction load of Total Suspended Solids (TSS).

This standard is met for design analysis points. To aid in removal of total suspended solids, deep sump hooded catch basins, water quality units, and infiltration basins with sediment forebays are proposed.

<u>Standard 5</u>: For land uses with higher potential pollutant loads, source control and pollution prevention shall be implemented in accordance with the Massachusetts Stormwater Handbook to eliminate or reduce the discharge of stormwater runoff from such land uses to the maximum extent practicable.

Not applicable. This project is not considered a higher potential pollutant load use.

<u>Standard 6:</u> Stormwater discharges within the Zone II or Interim Wellhead Protection Area of a public water supply, and stormwater discharges near or to any other critical area, require the use of the specific source control and pollution prevention measures and the specific structural stormwater best management practices determined by the Department to be suitable for managing discharges to such areas, as provided in the Massachusetts Stormwater Handbook.

Not applicable. This project is not located within or near any critical area.

<u>Standard 7:</u> A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3 and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5 and 6. Existing stormwater discharges shall comply with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions.

Redevelopment standards have been met.

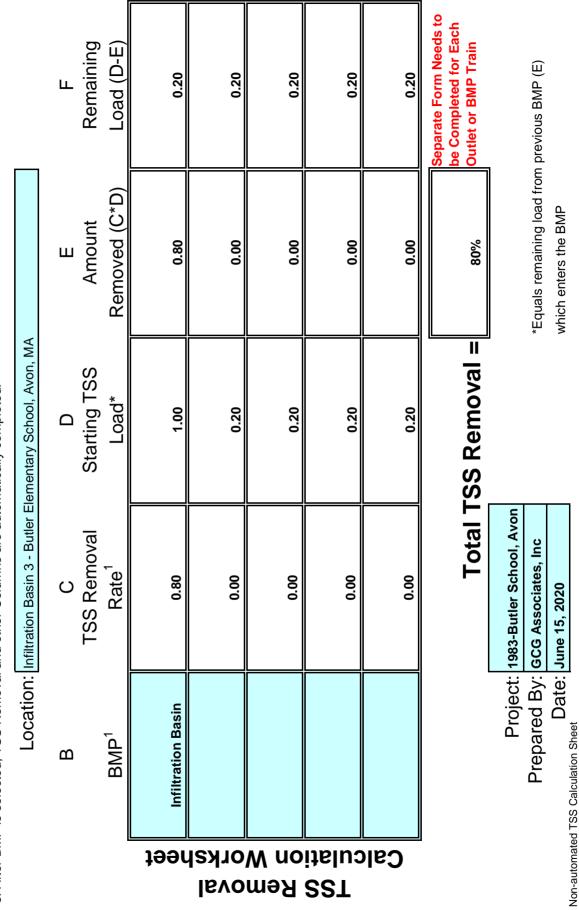
<u>Standard 8:</u> A plan to control construction-related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentations, and pollution prevention plan) shall be developed and implemented.

A Construction Period Pollution Prevention and Sedimentation Erosion Control Plan, Appendix D, has been developed to outline recommended requirements to control construction related impacts including erosion, sedimentation and other pollutant sources during construction and land disturbance activities. Measures are depicted on detail sheets.

<u>Standard 9:</u> A long-term operation and maintenance plan shall be developed and implemented to ensure that stormwater management systems function as designed.

An Operation and Maintenance Plan (O&M) has been developed that outlines maintenance requirements to ensure longevity of BMP's. See Appendix D for Long Term Operations & Maintenance Plan.

<u>Standard 10:</u> All illicit discharges to the stormwater management system are prohibited.


The proposed stormwater management system does not include any illicit discharges. See Appendix D for 'Illicit Discharge Statement.

INSTRUCTIONS:

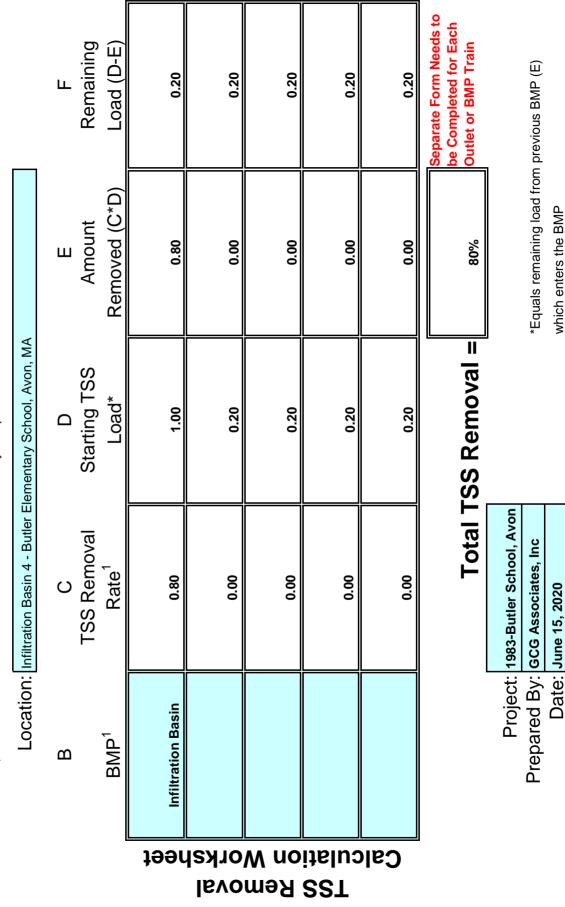
1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

Version 1, Automated: Mar. 4, 2008

1. From MassDEP Stormwater Handbook Vol. 1


must be used if Proprietary BMP Proposed

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

1. From MassDEP Stormwater Handbook Vol. 1

Non-automated TSS Calculation Sheet must be used if Proprietary BMP Proposed

Version 1, Automated: Mar. 4, 2008

Brief Stormceptor Sizing Report - Butler School

Project Information & Location							
Project Name 1983-WITH ROOF		Project Number	1				
City	Avon	State/ Province	Massachusetts				
Country United States of America		Date	4/24/2020				
Designer Information		EOR Information	(optional)				
Name	John Getherall	Name					
Company	GCG Associates, Inc.	Company					
Phone #	978-657-9714	Phone #					
Email	jgetherall@gcgassociates.net	Email					

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	Butler School
Target TSS Removal (%)	80
TSS Removal (%) Provided	82
Recommended Stormceptor Model	STC 2400

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary						
Stormceptor Model	% TSS Removal Provided					
STC 450i	70					
STC 900	78					
STC 1200	78					
STC 1800	78					
STC 2400	82					
STC 3600	83					
STC 4800	86					
STC 6000	87					
STC 7200	89					
STC 11000	92					
STC 13000	92					
STC 16000	93					

Stormceptor[®]

Sizing Details					
Drainage	Area	Water Qua	ality Objective	9	
Total Area (acres)	2.89	TSS Removal ((%)	80.0	
Imperviousness %	64.1	64.1 Runoff Volume Capture (%)			
Rainfa	all	Oil Spill Capture Volume (Gal)			
Station Name	BOSTON WSFO AP	Peak Conveyed Flow Rate (CFS)			
State/Province	Massachusetts	Water Quality Flow Rate (CFS)			
Station ID #	0770	Up Stream Storage			
Years of Records	58	Storage (ac-ft) Discharge (cf		rge (cfs)	
Latitude	42°21'38"N	0.000 0.000		000	
Longitude	71°0'38"W	Up Stream Flow Diversion			

Max. Flow to Stormceptor (cfs)

Particle Size Distribution (PSD) The selected PSD defines TSS removal					
Fine Distribution					
Particle Diameter (microns)	Distribution %	Specific Gravity			
20.0	20.0	1.30			
60.0	20.0	1.80			
150.0	20.0	2.20			
400.0	20.0	2.65			
2000.0 20.0 2.65					
Notes					

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond DET-3: DET-3

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
203.00	1,527	0	204.06	2,296	1,986	
203.02	1,539	31	204.08	2,330	2,032	
203.04	1,551	62	204.10	2,364	2,079	
203.06	1,564	93	204.12	2,399	2,126	
203.08	1,576	124	204.14	2,434	2,175	
203.10	1,588	156	204.16	2,469	2,224	
203.12	1,601	188	204.18	2,504	2,274	
203.14	1,613	220	204.20	2,540	2,324	
203.16	1,626	252	204.22	2,576	2,375	
203.18	1,638	285	204.24	2,612	2,427	
203.20	1,651	318	204.26	2,648	2,480	
203.22	1,664	351	204.28	2,685	2,533	
203.24	1,676	384	204.30	2,722	2,587	
203.26	1,689	418	204.32	2,759	2,642	
203.28	1,702	452	204.34	2,796	2,697	
203.30	1,715	486	204.36	2,834	2,754	
203.32	1,728	520	204.38	2,872	2,811	
203.34	1,741	555	204.40	2,910	2,869	
203.36	1,754	590	204.42	2,948	2,927	
203.38	1,767	625	204.44	2,987	2,986	
203.40	1,780	661	204.46	3,026	3,047	
203.42	1,793	696 722	204.48	3,065	3,108	
203.44	1,806	732	204.50	3,104	3,169	
203.46	1,819	769	204.52	3,144	3,232	
203.48	1,833	805 842	204.54	3,184	3,295	
203.50 203.52	1,846	879	204.56 204.58	3,224	3,359	
203.52	1,859 1,873	916	204.58	3,264 3,305	3,424 3,490	
203.54	1,886	954	204.60	3,346	3,556	
203.58	1,900	954 992	204.62	3,340	3,623	
203.60	1,913	1,030	204.66	3,429	3,692	
203.62	1,927	1,068	204.68	3,470	3,761	
203.64	1,941	1,107	204.70	3,512	3,830	
203.66	1,954	1,146	204.72	3,554	3,901	
203.68	1,968	1,185	204.74	3,597	3,973	
203.70	1,982	1,225	204.76	3,639	4,045	
203.72	1,996	1,264	204.78	3,682	4,118	
203.74	2,010	1,304	204.80	3,725	4,192	
203.76	2,024	1,345	204.82	3,769	4,267	
203.78	2,038	1,385	204.84	3,813	4,343	
203.80	2,052	1,426	204.86	3,857	4,420	
203.82	2,066	1,468	204.88	3,901	4,497	
203.84	2,080	1,509	204.90	3,945	4,576	
203.86	2,094	1,551	204.92	3,990	4,655	
203.88	2,108	1,593	204.94	4,035	4,735	
203.90	2,123	1,635	204.96	4,080	4,817	
203.92	2,137	1,678	204.98	4,125	4,899	
203.94	2,152	1,721	205.00	4,171	4,982	
203.96	2,166	1,764		·		
203.98	2,180	1,807				
204.00	2,195	1,851				
204.02	2,228	1,895				
204.04	2,262	1,940				
		I				

Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond DET-4: DET-4

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
204.00	1,696	0	205.06	2,502	2,180	
204.02	1,709	34	205.08	2,539	2,231	
204.04	1,722	68	205.10	2,577	2,282	
204.06	1,734	103	205.12	2,615	2,334	
204.08	1,747	138	205.14	2,653	2,387	
204.10	1,760	173	205.16	2,692	2,440	
204.12	1,773	208	205.18	2,730	2,494	
204.14	1,786	244	205.20	2,770	2,549	
204.16	1,799	280	205.22	2,809	2,605	
204.18	1,812	316	205.24	2,849	2,662	
204.20	1,825	352	205.26	2,889	2,719	
204.22	1,839	389	205.28	2,929	2,777	
204.24	1,852	426	205.30	2,969	2,836	
204.26	1,865	463	205.32	3,010	2,896	
204.28	1,879	500	205.34	3,051	2,956	
204.30	1,892	538	205.36	3,092	3,018	
204.32	1,905	576	205.38	3,134	3,080	
204.34	1,919	614	205.40	3,176	3,143	
204.36	1,932	653	205.42	3,218	3,207	
204.38	1,946	691	205.44	3,261	3,272	
204.40	1,960	731	205.46	3,303	3,338	
204.42	1,973	770	205.48	3,346	3,404	
204.44	1,987	809	205.50	3,390	3,471	
204.46	2,001	849	205.52	3,433	3,540	
204.48	2,015	889	205.54	3,477	3,609	
204.50	2,029	930	205.56	3,521	3,679	
204.52	2,043	971	205.58	3,565	3,750	
204.54	2,057	1,012	205.60	3,610	3,821	
204.56	2,001	1,053	205.62	3,655	3,894	
204.58	2,085	1,094	205.64	3,700	3,968	
204.60	2,099	1,136	205.66	3,746	4,042	
204.62	2,113	1,178	205.68	3,792	4,117	
204.64	2,127	1,221	205.70	3,838	4,194	
204.66	2,141	1,263	205.72	3,884	4,271	
204.68	2,156	1,306	205.74	3,931	4,349	
204.70	2,170	1,350	205.76	3,978	4,428	
204.72	2,184	1,393	205.78	4,025	4,508	
204.74	2,199	1,437	205.80	4,072	4,589	
204.76	2,213	1,481	205.82	4,120	4,671	
204.78	2,228	1,526	205.84	4,168	4,754	
204.80	2,242	1,570	205.86	4,216	4,838	
204.82	2,257	1,615	205.88	4,265	4,923	
204.84	2,272	1,661	205.90	4,314	5,008	
204.86	2,287	1,706	205.92	4,363	5,095	
204.88	2,301	1,752	205.94	4,412	5,183	
204.90	2,316	1,798	205.96	4,462	5,272	
204.92	2,331	1,845	205.98	4,512	5,361	
204.94	2,346	1,891	206.00	4,562	5,452	
204.96	2,361	1,939	200.00	7,00L	0,702	
204.98	2,376	1,986				
205.00	2,391	2,034				
205.02	2,428	2,082				
205.04	2,464	2,002				
	,	_,				

Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 3A: Forebay 3A

		-	I —		•
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
203.00	139	0	204.06	354	254
203.02	142	3	204.08	358	261
203.04	145	6	204.10	361	269
203.06	149	9	204.12	365	276
203.08	152	12	204.14	369	283
203.10	155	15	204.16	373	291
203.12	159	18	204.18	377	298
203.14	162	21	204.20	380	306
203.16	166	24	204.22	384	313
203.18	169	28	204.24	388	321
203.20	173	31	204.26	392	329
203.22	176	35	204.28	396	337
203.24	180	38	204.30	400	345
203.26	183	42	204.32	404	353
203.28	187	45	204.34	408	361
203.30	191	49	204.36	412	369
203.32	194	53	204.38	416	377
203.34	198	57	204.40	420	386
203.36	202	61	204.42	424	394
203.38	202	65	204.44	428	403
203.40	210	69	204.46	432	400
203.40	210	73	204.48	436	420
203.44	214	78	204.50	440	429
203.44	210	82	204.50	444	429
203.40	226	87	204.52	444	430
203.40	230	91	204.54	440	440
203.50	230	96	204.58	452	465
	234			461	405
203.54	238	101	204.60		
203.56		105	204.62	465	483
203.58	246	110	204.64	469	492
203.60	251	115	204.66	474	502
203.62	255	120	204.68	478	511
203.64	259	125	204.70	482	521
203.66	263	131	204.72	486	531
203.68	268	136	204.74	491	540
203.70	272	141	204.76	495	550
203.72	277	147	204.78	500	560
203.74	281	152	204.80	504	570
203.76	286	158	204.82	508	580
203.78	290	164	204.84	513	591
203.80	295	170	204.86	517	601
203.82	300	176	204.88	522	611
203.84	304	182	204.90	526	622
203.86	309	188	204.92	531	632
203.88	314	194	204.94	535	643
203.90	319	200	204.96	540	654
203.92	323	207	204.98	544	664
203.94	328	213	205.00	549	675
203.96	333	220			
203.98	338	227	STORAGE	E VOLUME	
204.00	343	233 -		VERFLOW	
204.02	347	240		VENCLOW	
204.04	350	247			
			I		

Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

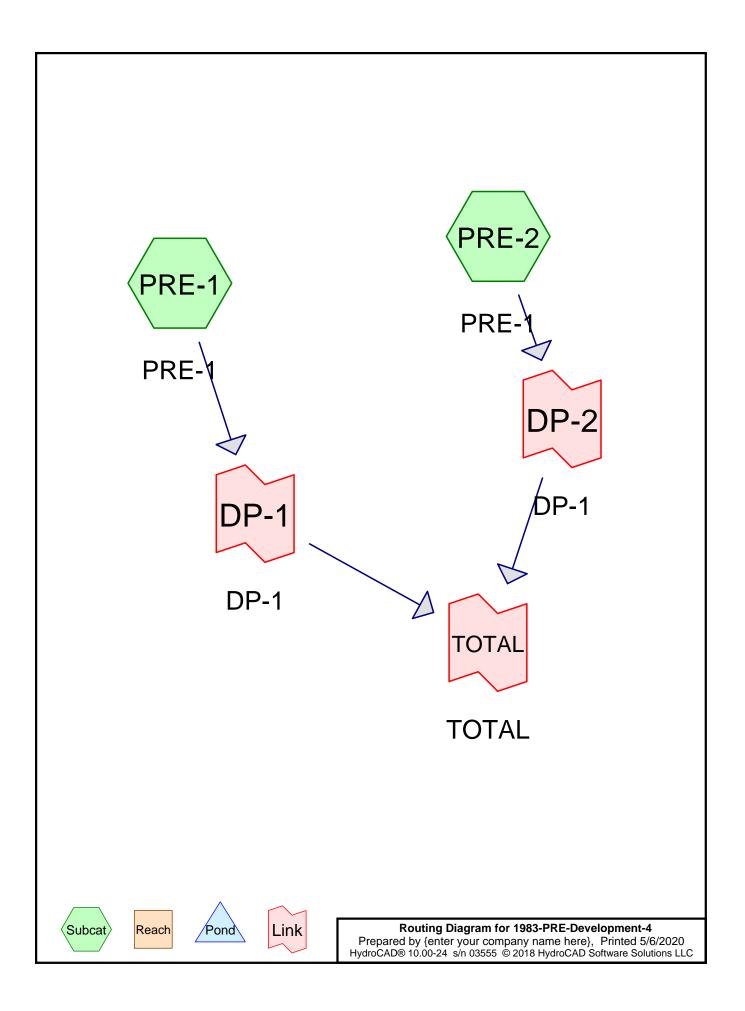
Stage-Area-Storage for Pond 3B: Forebay 3B

	Curfees	Chanana	Flowetien	Curfore	Chargen
Elevation	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface	Storage (cubic-feet)
(feet) 203.00	137	0	204.06	<u>(sq-ft)</u> 327	242
203.00	140	3	204.08	330	242
203.02	143	6	204.00	332	255
203.04	146	8	204.10	335	261
203.08	149	11	204.14	337	268
203.10	152	14	204.16	340	275
203.12	155	18	204.18	342	282
203.14	158	21	204.20	345	289
203.16	161	24	204.22	347	295
203.18	164	27	204.24	350	302
203.20	167	30	204.26	352	309
203.22	171	34	204.28	355	317
203.24	174	37	204.30	357	324
203.26	177	41	204.32	360	331
203.28	181	44	204.34	362	338
203.30	184	48	204.36	365	345
203.32	187	52	204.38	367	353
203.34	191	55	204.40	370	360
203.36	194	59	204.42	373	367
203.38 203.40	198	63	204.44 204.46	375	375
203.40	201 205	67		378	382
203.42	205	71 75	204.48 204.50	381 383	390 398
203.44	208	80	204.50	386	405
203.48	212	84	204.52	388	403
203.50	219	88	204.56	391	421
203.52	223	93	204.58	394	429
203.54	226	97	204.60	396	437
203.56	230	102	204.62	399	445
203.58	234	106	204.64	402	453
203.60	238	111	204.66	405	461
203.62	241	116	204.68	407	469
203.64	245	121	204.70	410	477
203.66	249	126	204.72	413	485
203.68	253	131	204.74	415	493
203.70	257	136	204.76	418	502
203.72	261	141	204.78	421	510
203.74	265	146	204.80	424	519
203.76 203.78	269 273	152 157	204.82 204.84	427 429	527 536
203.80	273	162	204.84	429	544
203.82	281	168	204.88	435	553
203.84	286	174	204.90	438	562
203.86	290	179	204.92	441	571
203.88	294	185	204.94	443	579
203.90	298	191	204.96	446	588
203.92	303	197	204.98	449	597
203.94	307	203	205.00	452	606
203.96	311	210			
203.98	316	216	STORAGE	E VOLUME	
204.00	320	222		VERFLOW	
204.02	322	229			
204.04	325	235			

Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 4A: Forebay 4A

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
204.00	95	0	205.06	346	221	
204.02	98	2	205.08	351	228	
204.04	102	4	205.10	356	235	
204.06	105	6	205.12	361	243	
204.08	109	8	205.12	366	250	
204.10	112	10	205.16	372	257	
204.12	116	13	205.18	377	265	
204.12	119	15	205.20	382	200	STORAGE VOLUME
204.14	123	10	205.22	387	280	BELOW OVERFLOW
204.18	123	20	205.22	393	288	
204.20	131	20	205.24	398	296	
204.20	135	25	205.28	404	304	
204.22	139	23	205.30	404	312	
204.24	143	20 31	205.30	409	312	
	143	34		414		
204.28 204.30			205.34		328 337	
	151	37	205.36	426		
204.32	155	40	205.38	431	346	
204.34	159	43	205.40	437	354	
204.36	164	46	205.42	442	363	
204.38	168	49	205.44	448	372	
204.40	172	53	205.46	454	381	
204.42	177	56	205.48	460	390	
204.44	181	60	205.50	466	399	
204.46	186	63	205.52	471	409	
204.48	190	67	205.54	477	418	
204.50	195	71	205.56	483	428	
204.52	200	75	205.58	489	437	
204.54	205	79	205.60	495	447	
204.56	210	83	205.62	501	457	
204.58	215	87	205.64	507	467	
204.60	219	92	205.66	513	478	
204.62	225	96	205.68	520	488	
204.64	230	101	205.70	526	498	
204.66	235	105	205.72	532	509	
204.68	240	110	205.74	538	520	
204.70	245	115	205.76	545	530	
204.72	251	120	205.78	551	541	
204.74	256	125	205.80	557	553	
204.76	261	130	205.82	564	564	
204.78	267	135	205.84	570	575	
204.80	272	141	205.86	577	587	
204.82	278	146	205.88	583	598	
204.84	284	152	205.90	590	610	
204.86	289	158	205.92	596	622	
204.88	295	164	205.94	603	634	
204.90	301	170	205.96	610	646	
204.92	307	176	205.98	616	658	
204.94	313	182	206.00	623	670	
204.96	319	188				
204.98	325	195				
205.00	331	201				
205.02	336	208				
205.04	341	215				
		I				


Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 4B: Forebay 4B

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
204.00	95	0	205.06	346	221	
204.02	98	2	205.08	351	228	
204.04	102	4	205.10	356	235	
204.06	105	6	205.12	361	243	
204.08	109	8	205.14	366	250	
204.10	112	10	205.16	372	257	
204.12	116	13	205.18	377	265	
204.12	119	15	205.20	382	272	STORAGE VOLUME
204.16	123	17	205.20	387	280	BELOW OVERFLOW
204.18	123	20	205.22	393	288	
204.20	131	20	205.24	398	296	
204.20	135	22	205.28	404	304	
204.22	135	23	205.30	404	304	
204.24	143	31				
			205.32	414	320	
204.28	147	34	205.34	420	328	
204.30	151	37	205.36	426	337	
204.32	155	40	205.38	431	346	
204.34	159	43	205.40	437	354	
204.36	164	46	205.42	442	363	
204.38	168	49	205.44	448	372	
204.40	172	53	205.46	454	381	
204.42	177	56	205.48	460	390	
204.44	181	60	205.50	466	399	
204.46	186	63	205.52	471	409	
204.48	190	67	205.54	477	418	
204.50	195	71	205.56	483	428	
204.52	200	75	205.58	489	437	
204.54	205	79	205.60	495	447	
204.56	210	83	205.62	501	457	
204.58	215	87	205.64	507	467	
204.60	219	92	205.66	513	478	
204.62	225	96	205.68	520	488	
204.64	230	101	205.70	526	498	
204.66	235	105	205.72	532	509	
204.68	240	110	205.74	538	520	
204.70	245	115	205.76	545	530	
204.72	251	120	205.78	551	541	
204.74	256	125	205.80	557	553	
204.76	261	130	205.82	564	564	
204.78	267	135	205.84	570	575	
204.80	272	141	205.86	577	587	
204.82	278	146	205.88	583	598	
204.84	284	152	205.90	590	610	
204.86	289	158	205.92	596	622	
204.88	295	164	205.94	603	634	
204.90	301	170	205.96	610	646	
204.92	307	176	205.98	616	658	
204.94	313	182	206.00	623	670	
204.96	319	188	200.00	220		
204.98	325	195				
205.00	331	201				
205.02	336	208				
205.02	341	215				
200.04	041	2.0				

APPENDIX A: HYDROCAD CALCULATIONS Existing Conditions – Pre-Development Analysis Proposed Conditions – Post-Development Analysis

> Butler Elementary School Avon, MA 1983

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
98	Paved parking, HSG B (PRE-1, PRE-2)
65	Woods/grass comb., Fair, HSG B (PRE-1, PRE-2)
79	TOTAL AREA
	98 65

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
4.742	HSG B	PRE-1, PRE-2
0.000	HSG C	
0.000	HSG D	
0.000	Other	
4.742		TOTAL AREA

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	1.993	0.000	0.000	0.000	1.993	Paved parking	PRE-1, PRE-2
0.000	2.749	0.000	0.000	0.000	2.749	Woods/grass comb., Fair	PRE-1, PRE-2
0.000	4.742	0.000	0.000	0.000	4.742	TOTAL AREA	

1983-PRE-Development-4	Type III 24-hr 2-Year Rainfall=3.20"
Prepared by {enter your company name	here} Printed 5/6/2020
HydroCAD® 10.00-24 s/n 03555 © 2018 Hydr	CAD Software Solutions LLC Page 5
Time span=5.00	-20.00 hrs, dt=0.05 hrs, 301 points
	-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+T	ans method - Pond routing by Stor-Ind method
5,	5 7
Subcatchment PRE-1: PRE-1	Runoff Area=177,206 sf 47.15% Impervious Runoff Depth>1.36"
	Flow Length=842' Tc=7.2 min CN=81 Runoff=6.59 cfs 0.461 af
Subcatchment PRE-2: PRE-1	Runoff Area=29,358 sf 11.20% Impervious Runoff Depth>0.70"
	Flow Length=216' Tc=7.1 min CN=69 Runoff=0.51 cfs 0.039 af
Link DP-1: DP-1	Inflow=6.59 cfs 0.461 af
	Primary=6.59 cfs 0.461 af
Link DP-2: DP-1	Inflow=0.51 cfs 0.039 af
	Primary=0.51 cfs 0.039 af

Link TOTAL: TOTAL

Inflow=7.10 cfs 0.500 af Primary=7.10 cfs 0.500 af

Total Runoff Area = 4.742 acRunoff Volume = 0.500 afAverage Runoff Depth = 1.27"57.96% Pervious = 2.749 ac42.04% Impervious = 1.993 ac

1983-PRE-Development-4 Prepared by {enter your company nam <u>HydroCAD® 10.00-24 s/n 03555 © 2018 Hy</u>	
Runoff by SCS	00-20.00 hrs, dt=0.05 hrs, 301 points FR-20 method, UH=SCS, Weighted-CN Trans method - Pond routing by Stor-Ind method
Subcatchment PRE-1: PRE-1	Runoff Area=177,206 sf 47.15% Impervious Runoff Depth>2.54" Flow Length=842' Tc=7.2 min CN=81 Runoff=12.30 cfs 0.862 af
Subcatchment PRE-2: PRE-1	Runoff Area=29,358 sf 11.20% Impervious Runoff Depth>1.60" Flow Length=216' Tc=7.1 min CN=69 Runoff=1.27 cfs 0.090 af
Link DP-1: DP-1	Inflow=12.30 cfs 0.862 af Primary=12.30 cfs 0.862 af
Link DP-2: DP-1	Inflow=1.27 cfs 0.090 af Primary=1.27 cfs 0.090 af
Link TOTAL: TOTAL	Inflow=13.56 cfs 0.951 af Primary=13.56 cfs 0.951 af
Total Runoff Area = 4.742	2 ac Runoff Volume = 0.951 af Average Runoff Depth = 2.41" 57.96% Pervious = 2.749 ac 42.04% Impervious = 1.993 ac

1983-PRE-Development-4	Type III 24-hr 25-Year Rainfall=5.50"
Prepared by {enter your company nam	ne here} Printed 5/6/2020
HydroCAD® 10.00-24 s/n 03555 © 2018 Hy	droCAD Software Solutions LLC Page 7
Runoff by SCS	00-20.00 hrs, dt=0.05 hrs, 301 points FR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+	Trans method - Pond routing by Stor-Ind method
Subcatchment PRE-1: PRE-1	Runoff Area=177,206 sf 47.15% Impervious Runoff Depth>3.21" Flow Length=842' Tc=7.2 min CN=81 Runoff=15.45 cfs 1.089 af
Subcatchment PRE-2: PRE-1	Runoff Area=29,358 sf 11.20% Impervious Runoff Depth>2.15" Flow Length=216' Tc=7.1 min CN=69 Runoff=1.72 cfs 0.121 af
Link DP-1: DP-1	Inflow=15.45 cfs 1.089 af
	Primary=15.45 cfs 1.089 af
Link DP-2: DP-1	Inflow=1.72 cfs_0.121 af
	Primary=1.72 cfs 0.121 af
Link TOTAL: TOTAL	Inflow=17.18 cfs 1.210 af
	Primary=17.18 cfs 1.210 af
Total Runoff Area = 4.742	2 ac Runoff Volume = 1.210 af Average Runoff Depth = 3.06" 57.96% Pervious = 2.749 ac 42.04% Impervious = 1.993 ac

1983-PRE-Development-4	Type III 24-hr 100-Year Rainfall=6.70"
Prepared by {enter your company nam	he here} Printed 5/6/2020
HydroCAD® 10.00-24 s/n 03555 © 2018 Hydro	droCAD Software Solutions LLC Page 8
	00-20.00 hrs, dt=0.05 hrs, 301 points
	R-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+	Trans method - Pond routing by Stor-Ind method
Subcatchment PRE-1: PRE-1	Runoff Area=177,206 sf 47.15% Impervious Runoff Depth>4.25"
	Flow Length=842' Tc=7.2 min CN=81 Runoff=20.24 cfs 1.442 af
	5
Subcatchment PRE-2: PRE-1	Runoff Area=29,358 sf 11.20% Impervious Runoff Depth>3.03"
	Flow Length=216' Tc=7.1 min CN=69 Runoff=2.45 cfs 0.170 af
	Inflow=20.24 cfs 1.442 af
Link DP-1: DP-1	Primary=20.24 cfs 1.442 af
	F fillidiy=20.24 CIS 1.442 di
Link DP-2: DP-1	Inflow=2.45 cfs 0.170 af
	Primary=2.45 cfs 0.170 af
Link TOTAL: TOTAL	Inflow=22.69 cfs 1.612 af
	Primary=22.69 cfs 1.612 af
Total Runoff Area = 4.742	2 ac Runoff Volume = 1.612 af Average Runoff Depth = 4.08" 57.96% Pervious = 2.749 ac 42.04% Impervious = 1.993 ac

Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment PRE-1: PRE-1

20.24 cfs @ 12.10 hrs, Volume= 1.442 af, Depth> 4.25" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.70"

_	A	rea (sf)	CN E	Description		
		93,661	65 V	Voods/gras	ss comb., F	air, HSG B
_		83,545	98 F	aved park	ing, HSG B	
	1	77,206	81 V	Veighted A	verage	
		93,661	5	2.85% Per	vious Area	
		83,545	4	7.15% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	50	0.0200	1.20		Sheet Flow, Paved Sheet Flow
						Smooth surfaces n= 0.011 P2= 3.20"
	6.5	792	0.0100	2.03		Shallow Concentrated Flow, Paved
_						Paved Kv= 20.3 fps
	7.2	842	Total			

842 Total

Summary for Subcatchment PRE-2: PRE-1

Runoff 2.45 cfs @ 12.11 hrs, Volume= 0.170 af, Depth> 3.03" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.70"

_	A	rea (sf)	CN D	Description					
		26,069	65 V	Voods/gras	ss comb., F	air, HSG B			
_		3,289	98 F	aved park	ing, HSG B	8			
		29,358	69 V	69 Weighted Average					
		26,069	8	8.80% Per	vious Area				
		3,289	1	1.20% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	3.5	50	0.0500	0.24		Sheet Flow, Lawn Sheet Flow			
						Range n= 0.130 P2= 3.20"			
	3.6	166	0.0120	0.77		Shallow Concentrated Flow, Lawn SCF			
_						Short Grass Pasture Kv= 7.0 fps			

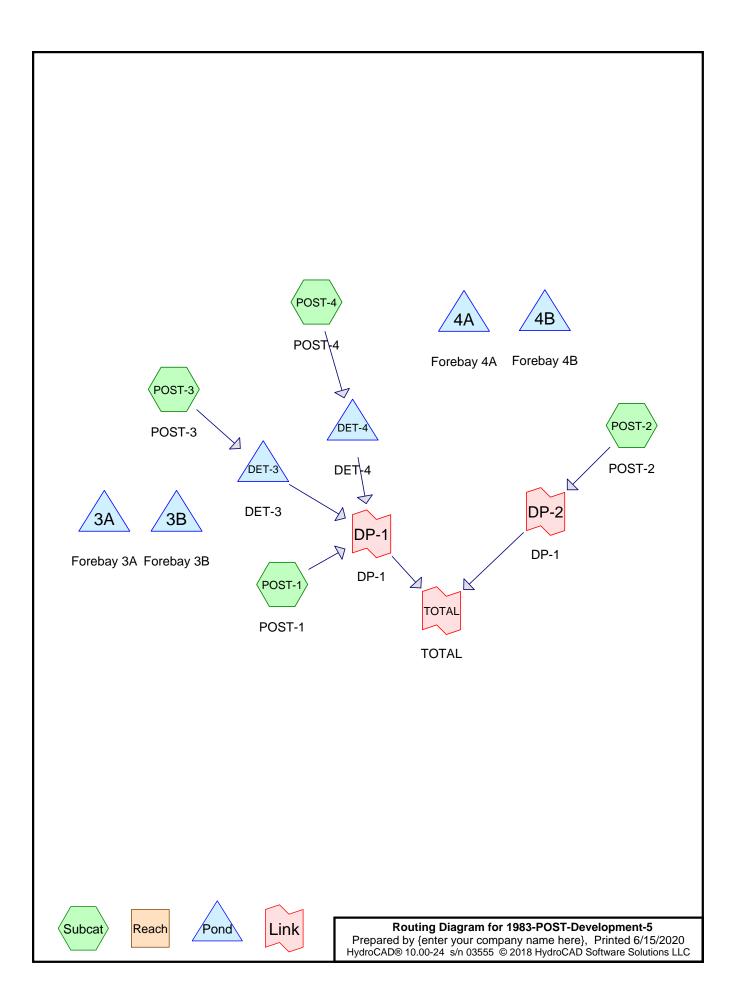
7.1 216 Total

Summary for Link DP-1: DP-1

Inflow Area =	=	4.068 ac, 47.15% Impervious, Inflow Depth > 4.25" for 100-Year event	
Inflow =	=	20.24 cfs @ 12.10 hrs, Volume= 1.442 af	
Primary =	=	20.24 cfs @ 12.10 hrs, Volume= 1.442 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP-1


Inflow Area =	0.674 ac, 11.20% Impervious, Int	flow Depth > 3.03" for 100-Year event
Inflow =	2.45 cfs @ 12.11 hrs, Volume=	0.170 af
Primary =	2.45 cfs @ 12.11 hrs, Volume=	0.170 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Summary for Link TOTAL: TOTAL

Inflow Area	=	4.742 ac, 4	2.04% Impe	ervious,	Inflow Dept	th > 4.0)8" for 1	00-Year event
Inflow =	=	22.69 cfs @	12.10 hrs,	Volume	= 1	.612 af		
Primary =	=	22.69 cfs @	12.10 hrs,	Volume	= 1	.612 af,	Atten= 0%	6, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
2.585	98	Paved parking, HSG B (POST-1, POST-3, POST-4)
2.158	65	Woods/grass comb., Fair, HSG B (POST-1, POST-2, POST-3, POST-4)

Soil Listing (all nodes)

Area (acres)	Soil Group	Subcatchment Numbers
0.000	HSG A	
4.742	HSG B	POST-1, POST-2, POST-3, POST-4
0.000	HSG C	
0.000	HSG D	
0.000	Other	

1983-POST-Development-5

Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

POST-4

				Ground C		nouesj		
	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
_	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
	0.000	2.585	0.000	0.000	0.000	2.585	Paved parking	POST-1,
								POST-3,
								POST-4
	0.000	2.158	0.000	0.000	0.000	2.158	Woods/grass comb., Fair	POST-1,
								POST-2,
								POST-3,

Ground Covers (all nodes)

1983-POST-Development-5

Prepared by {enter	your company name here}
HydroCAD® 10.00-24	s/n 03555 © 2018 HydroCAD Software Solutions LLC

Tipe Listing (an nodes)									
 Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	DET-3	201.80	200.35	144.0	0.0101	0.010	8.0	0.0	0.0
2	DET-4	203.49	199.75	353.0	0.0106	0.010	12.0	0.0	0.0

Pipe Listing (all nodes)

1983-POST-Development-5	Type III 24-hr 2-Year Rainfall=3.20"
Prepared by {enter your company name here}	Printed 6/15/2020
HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solution	s LLC Page 6

Subcatchment POST-1: P	OST-1 F	Runoff Area	a=104,7		% Imper CN=84				
Subcatchment POST-2: P	OST-2	Runoff	Area=5,		% Imperv CN=65				
Subcatchment POST-3: P	OST-3	Runoff Ar	ea=42,5		% Imper CN=81				
Subcatchment POST-4: P	OST-4	Runoff Ar	ea=53,7		% Imper CN=85				
Pond 3A: Forebay 3A					Pea	k Elev	/= 0.00'	Stora	age=0 cf
Pond 3B: Forebay 3B					Pea	k Elev	/= 0.00'	Stora	age=0 cf
Pond 4A: Forebay 4A					Pea	k Elev	/=0.00'	Stora	age=0 cf
Pond 4B: Forebay 4B					Pea	k Elev	/=0.00'	Stora	age=0 cf
Pond DET-3: DET-3	Discarded=0.38 cfs			•					0.119 af 0.120 af
Pond DET-4: DET-4	Discarded=0.49 cfs								0.180 af 0.181 af
Link DP-1: DP-1									0.337 af 0.337 af
Link DP-2: DP-1									0.006 af 0.006 af
Link TOTAL: TOTAL									0.343 af 0.343 af

Subcatchment POST-1: P	OST-1 F	unoff Area	1 sf 56.82 c=6.0 min					
Subcatchment POST-2: P	OST-2	Runoff /	77 sf 0.00 c=6.0 min					
Subcatchment POST-3: P	OST-3	Runoff Are	4 sf 49.64 c=6.0 min					
Subcatchment POST-4: P	OST-4	Runoff Are	3 sf 59.50 c=6.0 min					
Pond 3A: Forebay 3A				Pea	k Elev	′=0.00' ٤	Stora	ige=0 cf
Pond 3B: Forebay 3B				Pea	ık Elev	/=0.00' S	Stora	ige=0 cf
Pond 4A: Forebay 4A				Pea	ık Elev	/=0.00' S	Stora	ige=0 cf
Pond 4B: Forebay 4B				Pea	k Elev	/=0.00' S	Stora	ige=0 cf
Pond DET-3: DET-3	Discarded=0.58 cfs		5' Storage 0.00 cfs					
Pond DET-4: DET-4	Discarded=0.63 cfs		6' Storage 1.66 cfs					
Link DP-1: DP-1						w=8.20 ry=8.20		
Link DP-2: DP-1						ow=0.20 ry=0.20		
Link TOTAL: TOTAL						w=8.40 ry=8.40		

1983-POST-Development-5	Type III 24-hr 25-Year Rainfall=5.50"
Prepared by {enter your company name here}	Printed 6/15/2020
HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutio	ns LLC Page 8

Page 8

Subcatchment POST-1: P	OST-1 F	unoff Area=	=104,741 sf Tc=6.0	% Imper CN=84				
Subcatchment POST-2: P	OST-2	Runoff A	rea=5,577 s Tc=6	% Imper CN=65				
Subcatchment POST-3: P	OST-3	Runoff Area	a=42,534 sf Tc=6	% Imper CN=81				
Subcatchment POST-4: P	OST-4	Runoff Area	a=53,718 sf Tc=6	% Imper CN=85				
Pond 3A: Forebay 3A				Pea	ak Elev	′=0.00'	Stora	age=0 cf
Pond 3B: Forebay 3B				Pea	ak Elev	′=0.00'	Stora	age=0 cf
Pond 4A: Forebay 4A				Pea	ak Elev	/=0.00'	Stora	age=0 cf
Pond 4B: Forebay 4B				Pea	ak Elev	′=0.00'	Stora	age=0 cf
Pond DET-3: DET-3	Discarded=0.66 cfs		/=204.66' S Primary=0.4					
Pond DET-4: DET-4	Discarded=0.67 cfs		/=205.54' S Primary=3.1					
Link DP-1: DP-1				F				0.841 af 0.841 af
Link DP-2: DP-1								0.021 af 0.021 af
Link TOTAL: TOTAL				F				0.863 af 0.863 af

1983-POST-Development-5	Type III 24-hr	100-Year Rainfall=6.70"
Prepared by {enter your company name here}		Printed 6/15/2020
HvdroCAD® 10.00-24 s/n 03555 © 2018 HvdroCAD Software Soluti	ons LLC	Page 9

Page 9

Subcatchment POST-1: P	OST-1 F	Runoff Area		2% Imper CN=84				
Subcatchment POST-2: P	OST-2	Runoff A	rea=5,577 Tc=	0% Imper CN=65				
Subcatchment POST-3: P	OST-3	Runoff Area		4% Imper CN=81				
Subcatchment POST-4: P	OST-4	Runoff Area		0% Imper CN=85				
Pond 3A: Forebay 3A				Pea	ak Elev	/=0.00'	Stora	age=0 cf
Pond 3B: Forebay 3B				Pea	ak Elev	′=0.00'	Stora	age=0 cf
Pond 4A: Forebay 4A				Pea	ak Elev	′=0.00'	Stora	age=0 cf
Pond 4B: Forebay 4B				Pea	ak Elev	′=0.00'	Stora	age=0 cf
Pond DET-3: DET-3	Discarded=0.75 cfs		v=204.88' Primary=1.					
Pond DET-4: DET-4	Discarded=0.71 cfs		v=205.65' Primary=4.					
Link DP-1: DP-1				F				1.166 af 1.166 af
Link DP-2: DP-1								0.031 af 0.031 af
Link TOTAL: TOTAL				F				1.196 af 1.196 af

Summary for Subcatchment POST-1: POST-1

Runoff = 13.11 cfs @ 12.09 hrs, Volume= 0.972 af, Depth> 4.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.70"

A	rea (sf)	CN	Description						
	45,230	65	Noods/grass comb., Fair, HSG B						
	59,511	98	Paved park	ing, HSG B					
	04,741		Weighted A						
	45,230		43.18% Per						
	59,511		56.82% Imp	pervious Are	ea				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment POST-2: POST-2

Runoff = 0.42 cfs @ 12.10 hrs, Volume= 0.031 af, Depth> 2.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.70"

Α	rea (sf)	CN	Description				
	5,577				Fair, HSG B		
	0	98	Paved park	ing, HSG B	3		
	5,577	65	Weighted Average				
	5,577		100.00% Pervious Area				
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment POST-3: POST-3

Runoff = 5.02 cfs @ 12.09 hrs, Volume= 0.368 af, Depth> 4.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.70"

Area (sf)	CN	Description
21,419	65	Woods/grass comb., Fair, HSG B
21,115	98	Paved parking, HSG B
42,534	81	Weighted Average
21,419		50.36% Pervious Area
21,115		49.64% Impervious Area

1983-POST-Development-5 Type III 24-hr100-Year Rainfall=6.70"Prepared by {enter your company name here}Printed 6/15/2020HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLCPage 11						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0 Direct Entry,						
Summary for Subcatchment POST-4: POST-4						
Runoff = 6.84 cfs @ 12.09 hrs, Volume= 0.510 af, Depth> 4.96"						
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 100-Year Rainfall=6.70"						
Area (sf) CN Description						
21,758 65 Woods/grass comb., Fair, HSG B 31,960 98 Paved parking, HSG B						
53,718 85 Weighted Average 21,758 40.50% Pervious Area 31,960 59.50% Impervious Area						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
6.0 Direct Entry,						

Summary for Pond 3A: Forebay 3A

[43] Hint: Has no inflow (Outflow=Zero)

Volume	Invert	Avail.S	torage	Storage	Description		
#1	203.00'		238 cf	Custom	Stage Data (Coni	c) Listed below (Recalc)	
Elevation (feet)		Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft <u>)</u>	
203.00 204.00		139 354		0 238	0 238	139 361	

Summary for Pond 3B: Forebay 3B

[43] Hint: Has no inflow (Outflow=Zero)

Volume	Invert	Avail.S	Storage	Storage	e Description	
#1	203.00'		220 cf	Custon	n Stage Data (Cor	hic) Listed below (Recalc)
Elevation		Area		.Store	Cum.Store	Wet.Area
(feet)	()	sq-ft)	(cubi	c-feet)	(cubic-feet)	<u>(sq-ft)</u>
203.00		135		0	0	135
204.00		317		220	220	324

Summary for Pond 4A: Forebay 4A

[43] Hint: Has no inflow (Outflow=Zero)

Volume	Invert	Avail.S	Storage	Storage	Description		
#1	204.00'		670 cf	Custon	n Stage Data (Cor	nic)Listed below	(Recalc)
Elevation (feet)		Area sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
204.00 205.00 206.00		95 331 623		0 201 469	0 201 670	95 336 638	

Summary for Pond 4B: Forebay 4B

[43] Hint: Has no inflow (Outflow=Zero)

Volume	Invert	Avail.	Storage	Storage	Description		
#1	204.00'		670 cf	Custom	n Stage Data (Co	onic)Listed below	(Recalc)
Elevation (feet)		.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
204.00 205.00 206.00		95 331 623		0 201 469	0 201 670	95 336 638	

Summary for Pond DET-3: DET-3

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=61)

Inflow Area =	0.976 ac, 49.64% Impervious, Inflow D	epth > 4.52" for 100-Year event
Inflow =	5.02 cfs @ 12.09 hrs, Volume=	0.368 af
Outflow =	1.78 cfs @ 12.37 hrs, Volume=	0.368 af, Atten= 64%, Lag= 16.9 min
Discarded =	0.75 cfs @ 12.37 hrs, Volume=	0.316 af
Primary =	1.04 cfs @ 12.37 hrs, Volume=	0.052 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 204.88' @ 12.37 hrs Surf.Area= 3,902 sf Storage= 4,499 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 44.4 min (851.1 - 806.7)

Volume	Invert	Avail.Storage	Storage Description
#1	203.00'	4,982 cf	Custom Stage Data (Conic)Listed below (Recalc)

1983-POST-Development-5

Prepared by {enter your company name here} HydroCAD® 10.00-24 s/n 03555 © 2018 HydroCAD Software Solutions LLC

Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
203.0	00	1,527	0	0	1,527	
204.0	00	2,195	1,851	1,851	2,212	
205.0	00	4,171	3,131	4,982	4,198	
Device	Routing	Invert	Outlet Devices			
#1	Discarde	d 203.00'	8.270 in/hr Exf	iltration over Su	rface area	

π	Discalueu	205.00	0.270 m/m Eximitation over Surface area
#2	Primary	201.80'	8.0" Round Culvert
			L= 144.0' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 201.80' / 200.35' S= 0.0101 '/' Cc= 0.900
			n= 0.010 PVC, smooth interior, Flow Area= 0.35 sf
#3	Device 2	204.50'	8.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Discarded OutFlow Max=0.75 cfs @ 12.37 hrs HW=204.88' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.75 cfs)

Primary OutFlow Max=1.03 cfs @ 12.37 hrs HW=204.88' TW=0.00' (Dynamic Tailwater) -2=Culvert (Passes 1.03 cfs of 2.23 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.03 cfs @ 2.96 fps)

Summary for Pond DET-4: DET-4

Inflow Area =	1.233 ac, 59.50% Impervious, Inflow De	epth > 4.96" for 100-Year event
Inflow =	6.84 cfs @ 12.09 hrs, Volume=	0.510 af
Outflow =	5.59 cfs @ 12.14 hrs, Volume=	0.510 af, Atten= 18%, Lag= 3.2 min
Discarded =	0.71 cfs @ 12.15 hrs, Volume=	0.369 af
Primary =	4.88 cfs @ 12.14 hrs, Volume=	0.141 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 205.65' @ 12.15 hrs Surf.Area= 3,721 sf Storage= 4,002 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 32.8 min (829.0 - 796.2)

Volume	Invert	Avail.Stor	age Storage [Description		
#1	204.00'	5,45	2 cf Custom	Stage Data (Coni	c) Listed below (Re	calc)
Elevatio	et)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
204.0		1,696	0	0	1,696	
205.0 206.0		2,391 4,562	2,034 3,419	2,034	2,409 4,590	
200.0	00	4,302	3,419	5,452	4,590	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	204.00'	8.270 in/hr Ex	filtration over Su	rface area	
#2	Primary	203.49'	12.0" Round	Culvert		
#2		205 20'	L= 353.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 203.49' / 199.75' S= 0.0106 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf 24.0" x 24.0" Horiz, Orifice/Grate C= 0.600			
#3	Device 2	205.30'	24.U X 24.U I	TOTIZ. OTTICE/Gra	U = 0.000	

Limited to weir flow at low heads

Discarded OutFlow Max=0.71 cfs @ 12.15 hrs HW=205.65' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.71 cfs)

Primary OutFlow Max=4.86 cfs @ 12.14 hrs HW=205.64' TW=0.00' (Dynamic Tailwater) -2=Culvert (Inlet Controls 4.86 cfs @ 6.19 fps) -3=Orifice/Grate (Passes 4.86 cfs of 5.30 cfs potential flow)

Summary for Link DP-1: DP-1

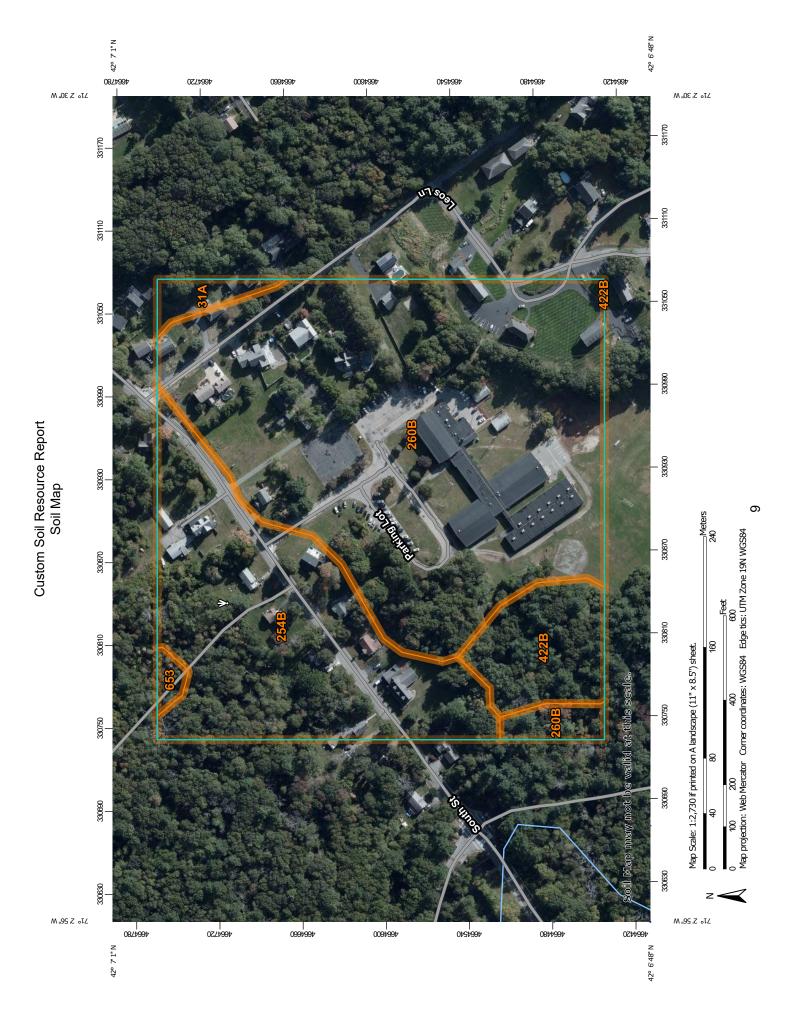
Inflow Are	a =	4.614 ac, 56.01% Impervious, Ir	nflow Depth > 3.03" for 100-Year event
Inflow	=	17.80 cfs @ 12.11 hrs, Volume=	1.166 af
Primary	=	17.80 cfs @ 12.11 hrs, Volume=	1.166 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link DP-2: DP-1

Inflow Area	a =	0.128 ac,	0.00% Impervious, Inflow	Depth > 2.87"	for 100-Year event
Inflow	=	0.42 cfs @	12.10 hrs, Volume=	0.031 af	
Primary	=	0.42 cfs @	12.10 hrs, Volume=	0.031 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Summary for Link TOTAL: TOTAL

Inflow Area	a =	4.742 ac, 54.50% Impervious, Inflow Dep	oth > 3.03" for 100-Year event
Inflow	=	18.21 cfs @ 12.11 hrs, Volume=	1.196 af
Primary	=	18.21 cfs @ 12.11 hrs, Volume=	1.196 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

APPENDIX B: Soil Map & Classifications Web Soil Survey, USDA, NRCS

> Butler Elementary School Avon, MA 1983

ſ

MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:25,000.	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.	Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	Soil Survey Area: Norfolk and Suffolk Counties, Massachusetts Survey Area Data: Version 15, Sep 12, 2019 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	Date(s) aerial images were photographed: Aug 31, 2019—Sep 24, 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Area of Interest (AOI) Story Spoil Area	Soils Soil Map Unit Polygons A very Stony Spot Soil Map Unit Lines Vert Spot Soil Map Unit Lines Other Soil Map Unit Points Other Blowout Vater Features	Borrow Pit Transportation Main Clay Spot Clay Spot Transportation Main Transportation Clavel Depression Interstate Highways Clavel Pit US Routes Gravel Iy Spot Major Roads	 Lariolli Lava Flow Lava Flow Background Marsh or swamp Aerial Photography Mine or Quarry Miscellaneous Water Perennial Water 	Rock Outcrop + Saline Spot Sandy Spot	Sinde or Sip

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
31A	Walpole sandy loam, 0 to 3 percent slopes	0.4	1.6%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	7.7	28.8%
260B	Sudbury fine sandy loam, 2 to 8 percent slopes	16.4	61.7%
422B	Canton fine sandy loam, 0 to 8 percent slopes, extremely stony	1.9	7.2%
653	Udorthents, sandy	0.2	0.7%
Totals for Area of Interest		26.7	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Norfolk and Suffolk Counties, Massachusetts

31A—Walpole sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2svkl Elevation: 0 to 1,020 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Not prime farmland

Map Unit Composition

Walpole and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Walpole

Setting

Landform: Deltas, outwash terraces, depressions, outwash plains, depressions
 Landform position (two-dimensional): Toeslope
 Landform position (three-dimensional): Tread, talf, dip
 Down-slope shape: Concave
 Across-slope shape: Concave
 Parent material: Sandy glaciofluvial deposits derived from igneous, metamorphic and sedimentary rock

Typical profile

Oe - 0 to 1 inches: mucky peat *A - 1 to 7 inches:* sandy loam *Bg - 7 to 21 inches:* sandy loam *BC - 21 to 25 inches:* gravelly sandy loam *C - 25 to 65 inches:* very gravelly sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 4 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Hydric soil rating: Yes

Minor Components

Sudbury

Percent of map unit: 10 percent Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Scarboro

Percent of map unit: 10 percent Landform: Outwash terraces, deltas, outwash plains Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

254B—Merrimac fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2tyqs Elevation: 0 to 1,290 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Merrimac and similar soils: 85 percent *Minor components*: 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Merrimac

Setting

Landform: Kames, eskers, outwash terraces, moraines, outwash plains Landform position (two-dimensional): Backslope, footslope, shoulder, summit Landform position (three-dimensional): Side slope, crest, riser, tread Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Loamy glaciofluvial deposits derived from granite, schist, and gneiss over sandy and gravelly glaciofluvial deposits derived from granite, schist, and gneiss

Typical profile

Ap - 0 to 10 inches: fine sandy loam *Bw1 - 10 to 22 inches:* fine sandy loam

Bw2 - 22 to 26 inches: stratified gravel to gravelly loamy sand *2C - 26 to 65 inches:* stratified gravel to very gravelly sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 2 percent
Salinity, maximum in profile: Nonsaline (0.0 to 1.4 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Hinckley

Percent of map unit: 5 percent Landform: Eskers, deltas, outwash plains, kames Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope, rise Down-slope shape: Convex Across-slope shape: Convex, linear Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent Landform: Terraces, deltas, outwash plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Windsor

Percent of map unit: 3 percent Landform: Dunes, deltas, outwash terraces, outwash plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Tread, riser Down-slope shape: Convex, linear Across-slope shape: Convex, linear Hydric soil rating: No

Agawam

Percent of map unit: 2 percent

Custom Soil Resource Report

Landform: Moraines, outwash plains, kames, stream terraces, eskers, outwash terraces Landform position (three-dimensional): Rise Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

260B—Sudbury fine sandy loam, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: vky4 Elevation: 0 to 2,100 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Sudbury and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sudbury

Setting

Landform: Outwash plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Riser Down-slope shape: Linear Across-slope shape: Concave Parent material: Friable coarse-loamy eolian deposits over loose sandy glaciofluvial deposits

Typical profile

H1 - 0 to 11 inches: sandy loam H2 - 11 to 22 inches: sandy loam H3 - 22 to 60 inches: gravelly coarse sand

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: 18 to 36 inches to strongly contrasting textural stratification
Natural drainage class: Moderately well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 5 percent Hydric soil rating: No

Deerfield

Percent of map unit: 5 percent Landform: Outwash plains Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: No

Walpole

Percent of map unit: 5 percent Landform: Terraces Hydric soil rating: Yes

422B—Canton fine sandy loam, 0 to 8 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2w818 Elevation: 0 to 1,180 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Canton, extremely stony, and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canton, Extremely Stony

Setting

Landform: Moraines, ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest, nose slope Down-slope shape: Convex, linear Across-slope shape: Convex *Parent material:* Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 5 inches:* fine sandy loam *Bw1 - 5 to 16 inches:* fine sandy loam *Bw2 - 16 to 22 inches:* gravelly fine sandy loam *2C - 22 to 67 inches:* gravelly loamy sand

Properties and qualities

Slope: 0 to 8 percent
Percent of area covered with surface fragments: 9.0 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Scituate, extremely stony

Percent of map unit: 6 percent Landform: Drumlins, ground moraines, hills Landform position (two-dimensional): Footslope, backslope, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Charlton, extremely stony

Percent of map unit: 6 percent Landform: Hills, ridges, ground moraines Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Crest, side slope Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Montauk, extremely stony

Percent of map unit: 4 percent Landform: Recessionial moraines, hills, drumlins, ground moraines Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, crest Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Swansea

Percent of map unit: 4 percent Landform: Marshes, swamps, kettles, bogs, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

653—Udorthents, sandy

Map Unit Setting

National map unit symbol: vky8 Elevation: 0 to 3,000 feet Mean annual precipitation: 45 to 54 inches Mean annual air temperature: 43 to 54 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Udorthents and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Udorthents

Setting

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Tread, riser Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Excavated and filled sandy glaciofluvial deposits

Typical profile

H1 - 0 to 6 inches: variable H2 - 6 to 60 inches: variable

Properties and qualities

Slope: 0 to 25 percent
Depth to restrictive feature: More than 80 inches
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to very high (0.06 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: A *Hydric soil rating:* Unranked

Minor Components

Udorthents

Percent of map unit: 8 percent *Hydric soil rating:* Unranked

Urban land

Percent of map unit: 5 percent Hydric soil rating: Unranked

Swansea

Percent of map unit: 2 percent Landform: Bogs Hydric soil rating: Yes **APPENDIX C: Stormwater Standards**

- **Construction Period Pollution Prevention Plan** Standard 8:
- Standard 9:Long Term Operation & Maintenance PlanStandard 10:Illicit Discharge Statement

Butler Elementary School Avon, MA 1983

STANDARD #8

CONSTRUCTION PERIOD POLLUTION PREVENTION AND SEDIMENTATION EROSION CONTROL PLAN

RALPH D. BUTLER ELEMENTARY SCHOOL AVON, MASSACHUSETTS

I. INTRODUCTION

The maintenance program below provides for a general construction plan with specific requirements for the **Ralph D. Butler Elementary School Parking Improvement Plan** project and stormwater management controls. The program is based on the recommended standards presented in the DEP Stormwater Management Policy Handbook dated February 2008.

II. RESPONSIBILITY AND IMPLEMENTATION

The implementation and execution of this maintenance program shall be the responsibility of the construction period contractor.

Construction activities shall conform to the approved project construction plans referenced below and any other regulations or requirements of the Town of Avon. Mulch filter tubes and silt fence shall be installed prior to construction. All sediment controls shall be in place before construction shall begin and shall be properly maintained throughout the course of construction. During construction, silt laden runoff shall not be permitted.

All BMPs and sediment controls shall be inspected, by the contractor, on a weekly basis and within 24 hours of a rain event that generates more than $\frac{1}{2}$ " of rain in a 24 hour period.

Should any dewatering activities be required, the contractor shall make certain that the all pumped water is free of sediment prior to discharging. The methods for removing any sediment shall be approved by the Town prior to any dewatering activities commence.

III. MAINTENANCE AND INSPECTION SCHEDULE

Maintenance of Stormwater BMP's

The following temporary and permanent erosion and sediment control BMP's are to be implemented in the stormwater management system and shall be monitored and maintained to assure continuous and effective performance. All inspections shall be conducted in accordance with the required schedule indicated below. Maintenance and repair shall be performed as required or if the effectiveness of the BMP is diminished.

A. Catch Basins with Deep Sumps

Each catch basin shall be protected with silt sacks and stone, as shown on the details contained in the project plan set referenced below. All accumulated sediment, debris, etc., should be removed as necessary. All sediment and debris removed from the silt sacks or catch basins shall be properly handled and disposed of in accordance with local, state, and federal guidelines and regulations. Catch basins with deep sumps should also be inspected on a monthly basis. Any required maintenance or repairs noted during the inspection should be addressed immediately.

B. Compost Sock & Orange Construction Fence

Compost Socks shall be installed per project plan set referenced below and should be inspected regularly, as well as after each rainfall event, to ensure that they are intact and the area behind the tube is not filled with sediment. If there is excessive ponding behind the sock or accumulated sediments reach the top of the sock, an additional sock should be added on top or in front of the existing filter sock in these areas, without disturbing the soil or accumulated sediment. If the compost sock tube was overtopped during a storm event, the operator should consider installing an additional compost sock on top of the original, placing an additional compost sock further up the slope, or using an additional BMP, such as a compost blanket in conjunction with the tube(s). Construction fence shall be inspected regularly and torn or damaged sections repaired immediately.

Maintenance requires the removal of sediment before it has accumulated to one-half of the above ground height of any perimeter control

C. Surface Stabilization

The surface of all disturbed areas shall be stabilized during and after construction. Temporary measures shall be taken during construction to prevent erosion and siltation. All disturbed slopes will be stabilized with a permanent vegetative cover. Some or all of the following measures will be utilized on this project as conditions may warrant.

- a. Temporary seeding (perform weekly if establishment is less than 80%)
- b. Temporary mulching
- c. Permanent seeding (perform weekly if establishment is less than 80%)
- d. Placement of sod
- e. Hydroseeding
- f. Placement of Hay
- g. Placement of Jute Netting

D. Preserve Natural Vegetation and Buffer Zones

Inspect limit of disturbance boundary for encroachment and Injury/exposure of tree roots. Inspections shall be conducted daily.

E. Dust Control

Apply/re-apply dust control measures to minimize dust from the site. Dust control activities shall be performed daily during dry weather

Inspection Requirements

All temporary and permanent erosion and sediment controls shall be inspected by qualified personnel. Inspection Technician shall assess the conditions of the site, the effectiveness of any erosion and sediment controls and provide recommendations and directions to ensure effective control of stormwater runoff, and suitable water quality discharge from construction activity.

Inspections shall include the entire area within the limit of disturbance of construction activity and stockpile/staging areas. A report shall be prepared identifying all areas of erosion, sediment accumulation, the condition and of all BMP's (structural and non-structural) and identify those in need of repair.

Maintenance

The site contractor is responsible for the installation and maintenance of all construction period erosion and sedimentation controls and BMP's. Prior to acceptance and approval of the completed stormwater management system, the entire system shall be inspected and cleaned in order to ensure the system will function as designed.

If it is observed through the course of construction that modifications to the system are necessary to provide proper treatment the work shall be performed prior to the next storm event.

IV. REFERENCES

• Plan Set: Ralph D. Butler Elementary School, 1 Patrick Clark Drive, Avon, Massachusetts, Parking Improvement Plan. Plans prepared by GCG Associates, Inc. and dated June 18, 2020.

STANDARD #9

STORMWATER AND DRAINAGE OPERATION AND MAINTENANCE PLAN

RALPH D. BUTLER ELEMENTARY SCHOOL AVON, MASSACHUSETTS

Ι. INTRODUCTION

The maintenance program below provides for a general construction plan with specific requirements for the Ralph D. Butler Elementary School Parking Improvement Plan project and stormwater management controls. The program is based on the recommended standards presented in the DEP Stormwater Management Policy Handbook dated February 2008 and DEP Snow Disposal Guidance, dated December 21, 2015.

RESPONSIBILITY AND IMPLEMENTATION II.

Owner/Operator:	

Avon Public Schools Central Office Patrick Clark Drive Avon, MA 02322

Owner Signature: _____ Date:

The property owner is the owner of all components of the drainage system as listed in Section III below, until property ownership is transferred, at which the drainage system becomes the property of the successive owner. The implementation, execution, and financing of this maintenance program and emergency repairs shall be the responsibility of the property owner until property ownership is transferred, at which time maintenance and repairs shall be the responsibility of the successive owner.

MAINTENANCE AND INSPECTION SCHEDULE III.

A. Catch Basin With Deep Sump System and Drainage Manhole

Catch basins with deep sumps and drainage manholes should be inspected four (4) times per year and after every major storm event. All accumulated sediment, debris, organic matter, etc., should be removed during this time. All sediment and debris removed from the catch basins should be properly handled and disposed of in accordance with local, state, and federal guidelines and regulations. Any required maintenance or repairs noted during the inspection should be addressed immediately. During each inspection, the drains should be inspected for evidence of clogging, and if necessary, any maintenance shall be performed so that it functions as designed. The catch basin shall be cleaned twice per year, and when sediment in the bottom of the sump reaches 24 inches below the bottom of the outlet pipe. At a minimum, inspection of the catch basin shall be performed during the last week of April and the first week of October each year.

B. Water Quality Structure (Stormceptor)

The performance of all stormwater quality measures decrease as they fill with sediment. Although the maintenance frequency will be site specific, SSR Hydro Conduit generally recommends annual maintenance be performed when the sediment volume in the unit reaches 15% of the total storage. Oil is removed through the inspection/ cleanout pipe and sediment is removed through the outlet riser pipe. Alternatively, oil could be removed from the outlet riser pipe if water is removed from the treatment chamber, lowering the oil level below the drop pipes. In the event of any hazardous material spill, CSR Hydro Conduit recommends maintenance be performed immediately. Maintenance should be performed by a licensed liquid waste hauler. Recharge Systems shall adhere to the following maintenance schedule:

Vacuum truck stormceptor cleaning Annually

Maintenance shall be performed by the Vacuum Service Industry, a well-established sector of the service industry that cleans underground tanks, sewers, and catch basins. Costs to clean a stormceptor will vary based on the size of the unit and transportation distances.

The requirements for the disposal of material from a Stormceptor are similar to that of any other Best Management Practices (BMP's). Local guidelines should be consulted prior to disposal of the separator contents. In most areas the sediment, once dewatered, can be disposed of in a sanitary landfill. It is not anticipated that the sediment would be classified as a hazardous waste. In some areas, mixing the water with the sediment will create a slurry that can be discharged into a trunk sanitary sewer. In all disposal options, approval from the disposal facility agency is required. Petroleum waste products collected I stormceptor (oil/ chemical/ fuel spills) should be removed by a licensed waste management company.

C. Sediment Forebay (Infiltration Basin Pre-Treatment Area)

The sediment forebays shall be inspected after every major storm event during the first three months following construction and monthly thereafter. Clean the sediment four times per year and when the sediment depth reaches 1/3 of the sump. All sediment removed should be properly handled and disposed of in accordance with local, state, and federal guidelines and regulations. Forebay should be mowed at least twice per year during growth season, keep the grass height no greater than 6 inches. Set mower blades no lower than 3 to 4 inches. Check for signs of rilling and gullying and repair as needed.

D. Infiltration Basin

Preventative maintenance, twice a year; Inspect after every major storm during first 3 months of operation and twice a year thereafter and when there are discharges through the high outlet orifice. Twice a year, mow the buffer area, side slopes, and basin bottom if grassed floor; rake if stone bottom; remove trash and debris; remove grass clippings and accumulated organic matter. Inspect and clean pretreatment devices every other month recommended and at least twice a year and after every major storm event.

Inspect infiltration basin after every major storm for the first few months to ensure it is stabilized and functioning properly and if necessary take corrective action. Note how long water remains standing in the basin after a storm; standing water within the basin 48 to 72 hours after a storm indicates that the infiltration capacity may have been overestimated. If the ponding is due to clogging, immediately address the reasons for the clogging (such as upland sediment erosion, excessive compaction of soils, or low spots).Thereafter, inspect the infiltration basin at least twice per year. Important items to check during the inspection include: Signs of differential settlement; Cracking; Erosion; Leakage in the embankments; Tree growth on the embankments; Condition of riprap; Sediment accumulation and the health of the turf. At least twice a year, mow the buffer area, side slopes, and basin bottom. Remove grass clippings and accumulated organic matter to prevent an impervious organic mat from forming. Remove trash and debris at the same time. Use deep tilling to break up clogged surfaces, and revegetate immediately. Remove sediment from the basin as necessary, but wait until the floor of the basin is thoroughly dry. Use light equipment to remove the top layer so as to not compact the underlying soil. Deeply till the remaining soil, and revegetate as soon as possible. Inspect and clean pretreatment devices associated with basins at least twice a year, and ideally every other month.

E. Rip-Rap

It is recommended that dumped rip-rap be inspected monthly and cleaned two times per year. Excessive sediment and debris should be removed as necessary and should typically be done after the street has been swept of sediment accumulated debris from winter sanding operations. Barren areas or eroded areas in should be repaired immediately. All sediment removed should be handled properly and disposed of in accordance with local, state, and federal guidelines and regulations.

F. Grassed Slope

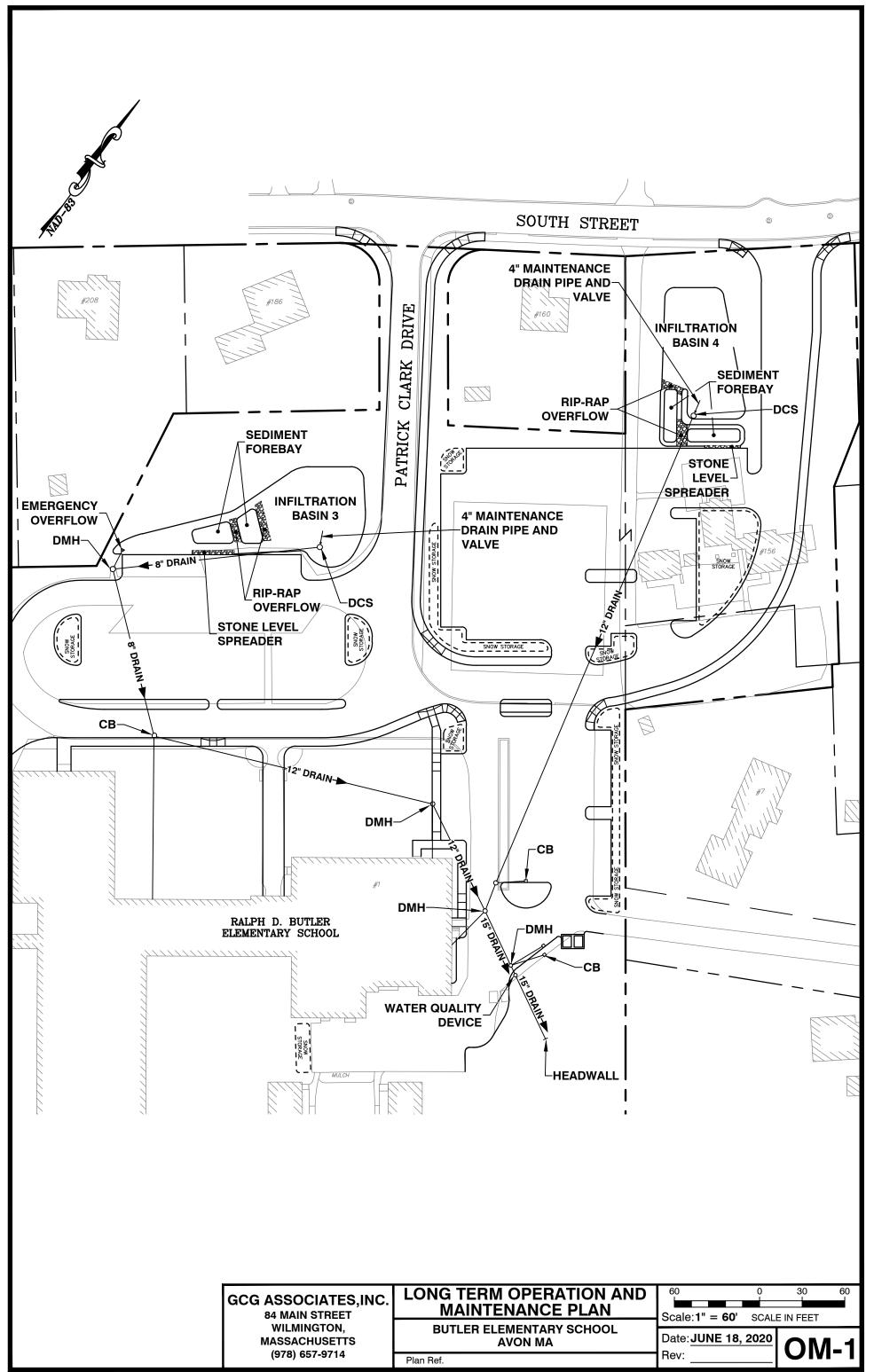
Grassed slope area adjacent to the roadway (where possible) should be mowed weekly between the months of May to September and a minimum of once per year in March or early April. Regular maintenance tasks include mowing, fertilizing, watering, pruning, weeding, and pest control. Maintain an average grass height of 4-6 inches to maintain the depth necessary to serve as a conveyance. Re-seed periodically to maintain the dense growth of grass vegetation.

G. Street Sweeping

Driveway, associated parking areas, and sidewalks adjacent to the roadway (where possible) should be swept by a street sweeper a minimum of twice per year. Street sweeping four times per year is recommended. Vacuum street sweepers are recommended.

H. Snow Storage Areas

All sidewalks and walkways shall remain clear from snow. Snow shall be stored in proposed locations shown on site. In the event of excessive snowfall, snow shall be plowed and temporarily stored in identified snow storage 'temporary' location and removed from site. Snow stored on-site within identified 'temporary' locations shall be limited to 10 days prior to removal. Snow storage areas shall be raked and inspected each spring and hydroseeded as necessary in addition to regular landscaping maintenance. Debris shall be cleared from the site and properly disposed of no later than May 15. Snow storage location within wetland buffer zone shall be revegetated with a hydroseed mix consisting of 50% or greater annual mix to speed vegetative growth.


IV. YEARLY MAINTENANCE BUDGET

Activity	Cost Freque	ncy/year	Total
A. Catch Basins	\$500.00	2	\$1,000.00
B. Stormceptor	\$600.00	1	\$600.00
C. Sediment Forebay	\$250.00	4	\$1,000.00
D. Infiltration Basin	\$300.00	2	\$600.00
E. Rip-Rap Cleaning	\$100.00	2	\$200.00
F. Grassed Slope Mowing	\$50.00	3	\$150.00
G. Street Sweeping	\$300.00	2	\$600.00

Η.	Snow Store Areas	\$200.00	1	<u>\$200.00</u>
		Total	=	\$4,350.00

V. REFERENCES

- Plan Set: Ralph D. Butler Elementary School, 1 Patrick Clark Drive, Avon, Massachusetts, Parking Improvement Plan. Plans prepared by GCG Associates, Inc. and dated June 18, 2020.
- Long Term Operation And Maintenance Plan, Butler Elementary School, Avon, MA Scale 1"=60', Dated: June 18, 2020.

ON Lows Seathard IN Designation (1000) 1000 DECION 1 dwg. Opened O/10/0000 4:00 DM Diated, Lug 10, 0000 4:00 Comm Table O AND M DI ANI, Diat Or Ja, OOO 0010 ath. Diated Duy, Jaka Orabaya

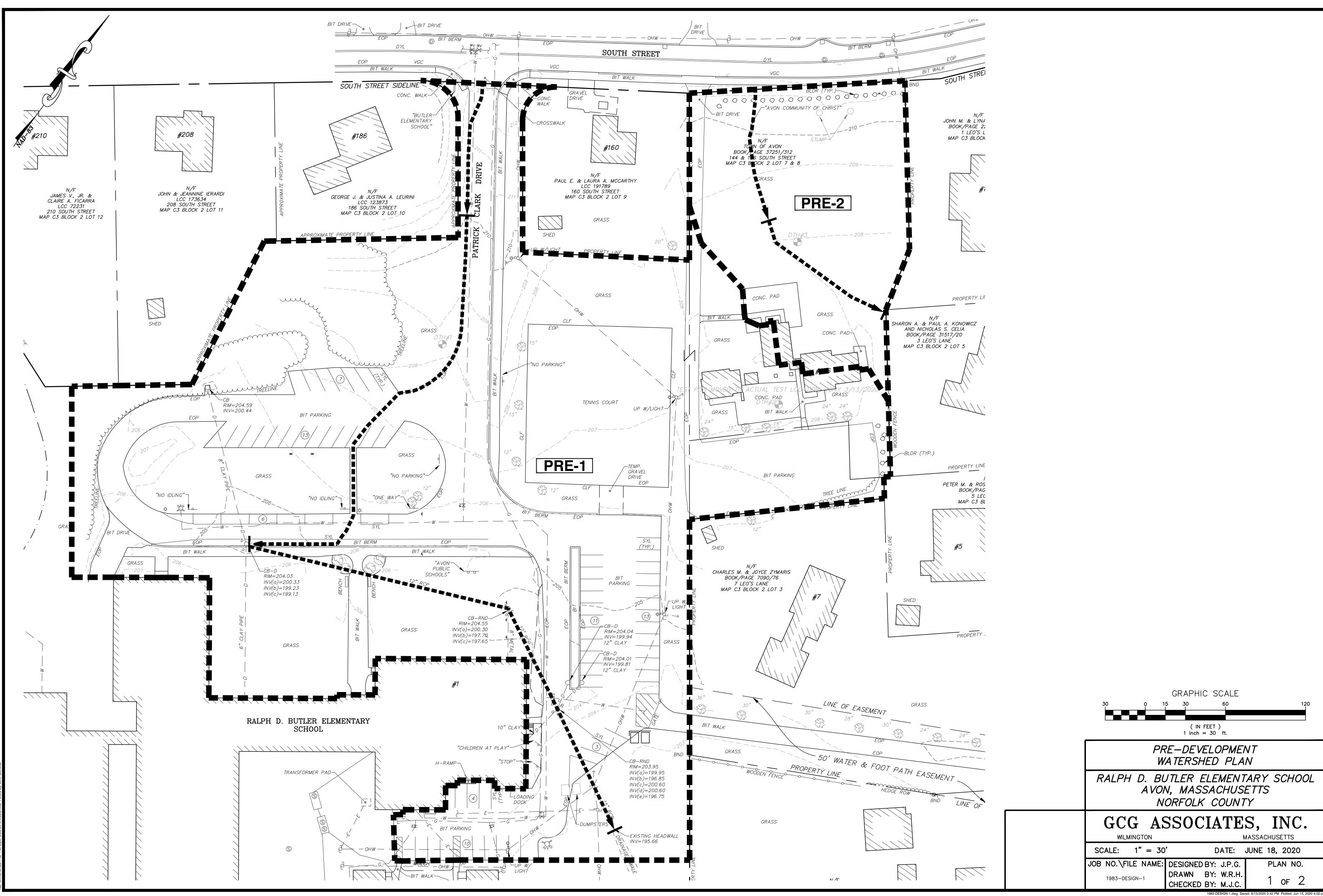
STANDARD #10

STORMWATER AND DRAINAGE ILLICIT DISCHARGE STATEMENT

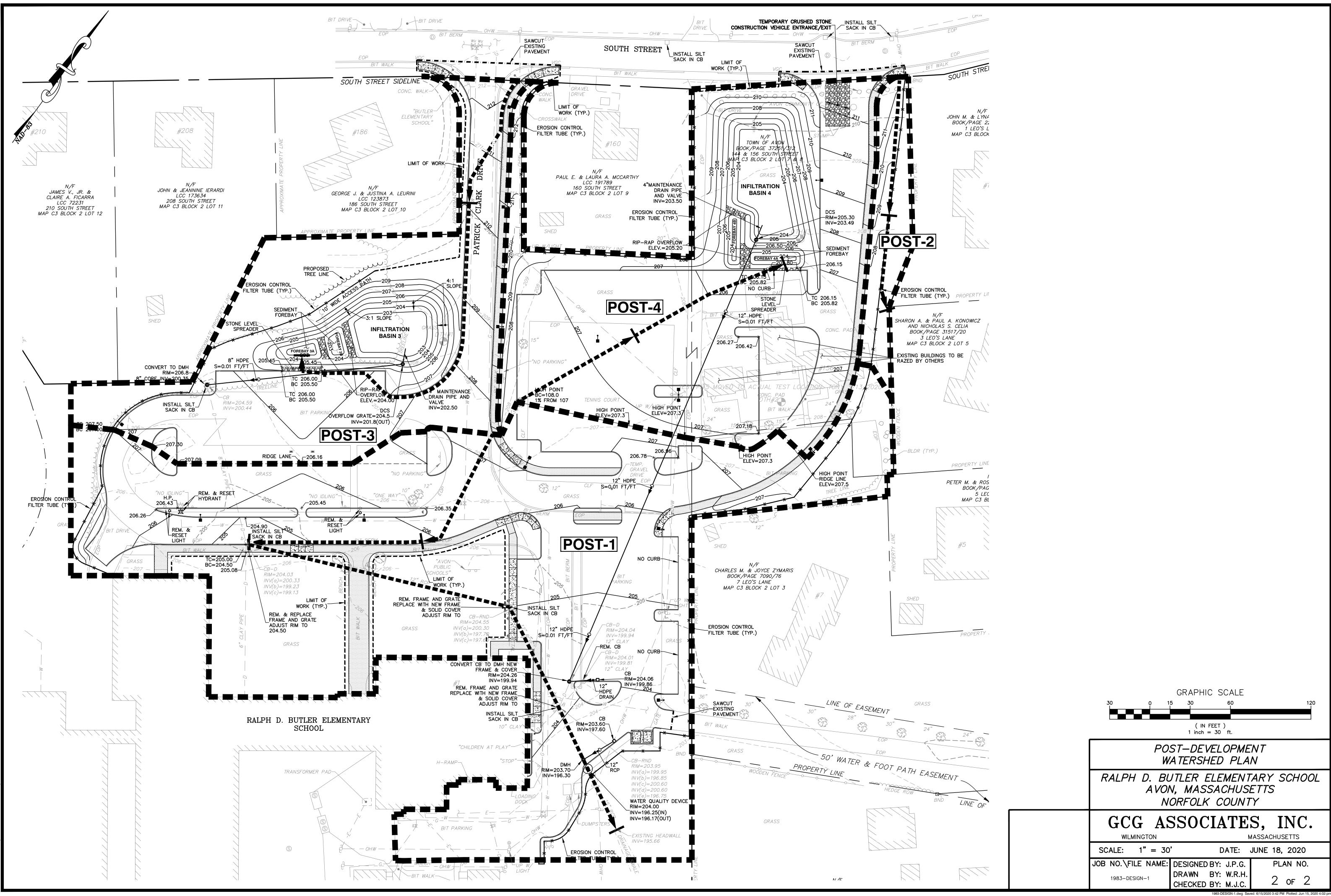
RALPH D. BUTLER ELEMENTARY SCHOOL AVON, MASSACHUSETTS

All illicit discharges to the stormwater management system are prohibited.

I. STATEMENT


This site as shown on the plan titled "RALPH D. BUTLER ELEMENTARY SCHOOL, 1 PATRICK CLARK DRIVE, AVON, MASSACHUSETTS, PARKING IMPROVEMENT PLANS, dated June 18, 2020." does not contain any illicit discharges, this was confirmed using visual screening as required by standard 10 of the "Massachusetts Stormwater Handbook" Vol. 1, Ch. 1 page 25. The project proponent, owner, or lessee (in perpetuity) must comply with local, state, and federal regulations for the discharge of illicit discharges from the site. Illicit discharges are discharges that are not entirely comprised of storm water. Notwithstanding the foregoing, an illicit discharge does not include discharges from the following activities:

- Fire fighting
- Water line flushing
- Landscape irrigation
- Uncontaminated ground water
- Potable water sources
- Foundation drains
- Air conditioning condensation
- Footing drains
- Individual car washing
- Water used for street washing and water used to clean residential buildings without detergents


The project proponent, owner, or lessee (in perpetuity) shall adhere to this report on file with the Town of Avon.

FIGURES: Watershed Plans Pre-Development Watershed Plan Post-Development Watershed Plan

> Butler Elementary School Avon, MA 1983

RSHED-PRE Plot Style: GCG-2018-COLOR.ctb Plotted By: John Getheral

ERSHED-POST Plot Style: GCG-2018-COLOR.ctb Plotted By: John Gethers