STORMWATER REPORT

Proposed Paving and Drainage Improvements
108 Bodwell Street
Avon, Massachusetts

Prepared for:
CJ Shaughnessy Realty LLC 520 Bodwell Street Ext. Avon, MA 02322

September 14, 2023

TABLE OF CONTENTS

Pages
Drainage Report Summary 3-7
Compliance with Massachusetts Stormwater Management 8-23
Overall Site Analysis - HydroCAD Report 24-136
Operation and Maintenance 137-143
Soils Testing and Information 144-156

SUMMARY

This Stormwater Report has been prepared to document compliance with Stormwater Management Standards. The applicant is proposing to pave approximately $60,400 \mathrm{sf}$. of the existing site that portion is currently gravel and install stormwater manage systems.

The proposed drainage system consists of subsurface infiltrations systems to attenuate runoff from the proposed paved areas.

The design as proposed reduces peak runoff rates, improves and promotes infiltration, improves stormwater quality and treatment.

This analysis is divided into the following sections:
Section I Compliance with Massachusetts Stormwater Management Regulations
Section II Overall Site Analysis
Section III Operation and Maintenance Plan

Pre Development -

Catchment (Subcat 1E) consists of existing stormwater runoff to the southwesterly wetland.
Catchment (Subcat 2E) consists of existing stormwater runoff to the Westerly wetland and property line.

Post Development -

Catchment (Subcat 1P) consists of proposed stormwater runoff to the southwesterly wetland.
Catchment (Subcat 2P) consists of proposed stormwater runoff to the Westerly wetland and property line.

Catchment (Subcat 3P) consists of proposed stormwater runoff from proposed pavement to the infiltration system. (10P).

Catchment (Subcat 4P) consists of proposed stormwater runoff from existing roof to the infiltration system. (9P).

Catchment (Subcat 5P) consists of proposed stormwater runoff from proposed pavement to the infiltration system. (7P).

Catchment (Subcat 6P) consists of proposed stormwater runoff from proposed pavement to the infiltration system. (8P).
(11L) consists of the combined proposed stormwater runoff to the southerly wetland to compare to (1E)
(12L) consists of the combined proposed stormwater runoff to the westerly wetland and property line to compare to (2E)

The calculations have been performed for the $2,10,25$, and 100 -year 24 hour storm event, using HydroCAD 10.00 Stormwater Modeling computer program. This computer program is based upon the TR-55 computer models and uses the SCS Curvilinear Unit rainfall distribution. The closed drainage system calculation were performed using the HydroCAD Stormwater Modeling program.

SUMMARY OF STORMWATER FLOWS

 (cfs)| Event | Rainfall (inches) | Runoff
 (cfs) | Volume (cubic-feet) | $\begin{array}{r} \text { Depth } \\ \text { (inches) } \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| 2-Year | 3.31 | 1.71 | 5,360 | 1.49 |
| 10-Year | 4.95 | 3.31 | 10,270 | 2.85 |
| 25-Year | 6.23 | 4.61 | 14,379 | 3.99 |
| 100-Year | 8.86 | 7.32 | 23,195 | 6.44 |

Events for Subcatchment 2E: To Westerly Wetland/Proper

Event Rainfall (inches)	Runoff (cfs)	Volume (cubic-feet)	Depth (inches)	
2-Year	3.31	3.84	11,942	2.01
10-Year	4.95	6.62	20,888	3.52
25-Year	6.23	8.79	28,112	4.74
100-Year	$\mathbf{8 . 8 6}$	$\mathbf{1 3 . 2 1}$	$\mathbf{4 3 , 2 5 1}$	$\mathbf{7 . 2 9}$

Events for Subcatchment 1P: To Southerly Wetland

Event Rainfall (inches)	Runoff (cfs)	Volume (cubic-feet)	Depth (inches)	
$2-$ Year	3.31	0.09	530	0.38
$10-$ Year	4.95	0.44	1,588	1.14
$25-$ Year	6.23	0.80	2,647	1.90
$100-$ Year	$\mathbf{8 . 8 6}$	$\mathbf{1 . 6 6}$	$\mathbf{5 , 2 1 9}$	$\mathbf{3 . 7 4}$

Events for Subcatchment 5P: Pavement to Infiltration Syst

Event Rainfall (inches)	Runoff (cfs)	Volume (cubic-feet)	Depth (inches)	
$2-$ Year	3.31	1.06	3,384	2.55
$10-$ Year	4.95	1.67	5,503	4.15
25 -Year	6.23	2.15	7,176	5.41
100 -Year	$\mathbf{8 . 8 6}$	$\mathbf{3 . 1 1}$	$\mathbf{1 0 , 6 3 4}$	$\mathbf{8 . 0 1}$

Events for Subcatchment 6P: Pavement to Infiltration Syst

Event Rainfall (inches)	Runoff (cfs)	Volume (cubic-feet)	Depth (inches)	
2 -Year	3.31	0.65	2,197	2.96
10 -Year	4.95	0.98	3,406	4.59
$25-$ Year	6.23	1.24	4,351	5.87
100 -Year	$\mathbf{8 . 8 6}$	$\mathbf{1 . 7 7}$	$\mathbf{6 , 2 9 6}$	$\mathbf{8 . 4 9}$

Events for Subcatchment 2P: To Westerly Wetland

Event Rainfall (inches)	Runoff (cfs)	Volume (cubic-feet)	Depth (inches)	
2-Year	3.31	0.04	339	0.31
10-Year	4.95	0.29	1,093	1.01
25 -Year	6.23	0.55	1,867	1.73
100 -Year	$\mathbf{8 . 8 6}$	$\mathbf{1 . 1 9}$	$\mathbf{3 , 7 7 7}$	$\mathbf{3 . 5 0}$

Events for Subcatchment 4P: Roof to Infiltration System

Event Rainfall (inches)	Runoff (cfs)	Volume (cubic-feet)	Depth (inches)	
2-Year	3.31	1.44	5,015	3.07
10-Year	4.95	2.17	7,682	4.71
25-Year	6.23	2.74	9,766	5.99
100-Year	$\mathbf{8 . 8 6}$	$\mathbf{3 . 9 1}$	$\mathbf{1 4 , 0 5 0}$	$\mathbf{8 . 6 1}$

Events for Subcatchment 3P: Pavement to Infiltration Syst

Event Rainfall (inches)		Runoff (cfs)	Volume (cubic-feet)	Depth (inches)
2-Year	3.31	2.94	10,235	3.07
10-Year	4.95	4.43	15,677	4.71
25-Year	6.23	5.59	19,929	5.99
100-Year	$\mathbf{8 . 8 6}$	$\mathbf{7 . 9 7}$	$\mathbf{2 8 , 6 7 1}$	$\mathbf{8 . 6 1}$

Events for Link 11L: To Southerly Wetland

Event	Inflow (cfs)	Primary (cfs)	Elevation (feet)
2-Year	0.09	0.09	$\mathbf{0 . 0 0}$
10-Year	1.42	1.42	0.00
25-Year	4.13	4.13	0.00
100-Year	$\mathbf{7 . 2 5}$	$\mathbf{7 . 2 5}$	0.00

Events for Link 12L: To Westerly Wetland

Event	Inflow (cfs)	Primary (cfs)	Elevation (feet)
2-Year	3.78	3.78	$\mathbf{0 . 0 0}$
10-Year	6.58	6.58	0.00
$25-$ Year	8.37	8.37	0.00
100-Year	$\mathbf{1 2 . 2 3}$	$\mathbf{1 2 . 2 3}$	0.00

Events for Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Elevation (feet)	Storage (cubic-feet)
2-Year	1.06	0.03	0.03	0.00	238.56	2,217
10-Year	1.67	1.14	0.03	1.12	239.02	2,360
25-Year	2.15	3.38	0.03	3.35	239.04	2,363
100-Year	$\mathbf{3 . 1 1}$	3.24	0.03	3.21	239.04	2,362

Events for Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Elevation (feet)	Storage (cubic-feet)
2-Year	0.65	0.03	$\mathbf{0 . 0 3}$	0.00	231.29	1,180
$10-$ Year	0.98	0.03	0.03	0.00	232.74	2,094
$25-$ Year	1.24	0.33	0.03	0.30	233.01	2,262
$100-$ Year	$\mathbf{1 . 7 7}$	$\mathbf{2 . 7 2}$	0.03	$\mathbf{2 . 7 0}$	$\mathbf{2 3 3 . 0 4}$	$\mathbf{2 , 2 7 2}$

Events for Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Event	Inflow (cfs)	Outflow (cfs)	Discarded (cfs)	Primary (cfs)	Elevation (feet)	Storage (cubic-feet)
2-Year	4.29	3.81	$\mathbf{0 . 0 7}$	3.73	233.03	6,351
10-Year	6.37	6.37	0.07	6.30	233.04	6,375
25-Year	7.89	7.89	0.07	7.82	233.05	6,389
100-Year	$\mathbf{1 1 . 1 0}$	$\mathbf{1 1 . 1 1}$	0.07	$\mathbf{1 1 . 0 3}$	$\mathbf{2 3 3 . 0 7}$	$\mathbf{6 , 4 1 8}$

Section I

Compliance with Massachusetts Stormwater Management Regulations

STANDARD 1. NO NEW STORMWATER CONVEYANCES

The proposed redevelopment proposes no new stormwater conveyances that discharge untreated stormwater off-site or cause down gradient erosion. The proposed redevelopment proposes to pave the existing gravel area located on the southwesterly side of the property. Currently the there is no stormwater treatment for the roof runoff from the existing building or the gravel area. The proposed redevelopment includes a subsurface infiltration systems.

STANDARD 2. PEAK RATE ATTENUATION

The overall site analysis demonstrates that the stormwater management system has been designed so that the post-development peak discharge rates do not exceed the pre-development discharge rate

STANDARD 3. STORMWATER RECHARGE

Loss of annual recharge to ground water shall be eliminated or minimized through the use of infiltration measures, including environmentally sensitive site design, low impact development techniques, best management practices, and good operation and maintenance. At a minimum, the annual recharge from the post-development site shall approximate the annual recharge from the pre-development conditions based on soil type. This Standard is met when the stormwater management system is designed to infiltrate the required recharge volume as determined in accordance with the Massachusettss Stormwater Handbook.

The redevelopment design meets Standard 3, comparing post-development to pre-development conditions. Currently there is no annual recharge of stormwater on the existing developed site. The annual recharge of the post-developed site exceeds the annual recharge from the pre-developed site.

Based on Plymouth County Soil Survey, and soils testing conducted onsite, it was determined that the site consists of Hydrologic Soils Group "Type B". In addition soils testing was conducted on the site in the vicinity for the proposed septic system confirming soil conditions and groundwater.

TABLE 1 REQUIRED RECHARGE VOLUME AND DRAWDOWN

Impervious Area $=60,400 \mathrm{SF}$
Target Depth Factor $(\mathrm{F})=0.35$ "
$R v=F x$ impervious area $=0.35^{\prime \prime} \times 60,400 \mathrm{SF} \times 1{ }^{\prime} / 12^{\prime \prime}=1,762 \mathrm{CF}$
Total Required Recharge $\quad=1,762 \mathrm{CF}$

Proposed:

Crushed Stone Infiltration Systems 1-4 (below outlets)
System \#1 $=2,308$ CF
System \#2 $=2,506$ CF
System \#3 $=6,301 \mathrm{CF}$

Total Recharge Volume Provided $=14,115$ CF

Drawdown Within 72 Hours

$$
\begin{aligned}
& \text { Time }_{\text {drawdown }}=\frac{R v}{(K)(\text { Bottom Area })} \\
& \text { Where: } \\
& R v=\text { Storage Volume } \\
& K=\text { Saturated Hydraulic Conductivity For "Static" and "Simple Dynamic" Methods, use } \\
& \text { Rawls Rate (see Table 2.3.3). For "Dynamic Field" Method, use 50\% of the in-situ } \\
& \text { saturated hydraulic conductivity. } \\
& \text { Bottom Area = Bottom Area of Recharge Structure }
\end{aligned}
$$

According to the HydroCAD 72 drawdown calculations the structures will fully drain within the 72 hour requirement.

Infiltration System \#1 - 54.10 Hours
Infiltration System \#2 - 50.10 Hours
Infiltration System \#3 - 52.10 Hours

Mounding Analysis
"Mounding analysis is required when the vertical separation from the bottom of an exfiltration system to seasonal high groundwater is less than four (4) feet and the recharge system is proposed to attenuate the peak discharge from a 10-year or higher 24-hour storm (e.g., 10year, 25-year, 50-year, or 100-year 24-hour storm). In such cases, the mounding analysis must demonstrate that the Required Recharge Volume (e.g., infiltration basin storage) is fully dewatered within 72 hours (so the next storm can be stored for exfiltration). The mounding analysis must also show that the groundwater mound that forms under the recharge system will not break out above the land or water surface of a wetland (e.g., it doesn't increase the water sheet elevation in a Bordering Vegetated Wetland, Salt Marsh, or Land Under Water within the 72-hour evaluation period)."
"The Hantush" or other equivalent method may be used to conduct the mounding analysis. The Hantush method predicts the maximum height of the groundwater mound beneath a rectangular or circular recharge area. It assumes unconfined groundwater flow, and that a linear relation exists between the water table elevation and water table decline rate. It results in a water table recession hydrograph depicting exponential decline. The Hantush method is available in proprietary software and free on-line calculators on the Web in automated format. If the analysis indicates the mound will prevent the infiltration BMP from fully draining within the 72-hour period, an iterative process must be employed to determine an alternative design that drains within the 72-hour period."

A mounding analysis is not required.

[^0]
STANDARD 4. WATER QUALITY

TSS Removal
Currently the existing site does not provide any TSS removal for runoff from the existing building and site. The redevelopment is an improvement of the existing conditions. In addition, pretreatment is not required for roof runoff.

The proposed work meets the requirement for removal of total suspended solids (TSS). See TSS Removal Worksheet

 Non-automated TSS Calculation Sheet

Long-Term Pollution Prevention Plan

The long-term pollution prevention plan will be combined with the Operation and Maintenance Plan required by Standard 9.

WATER QUALITY TREATMENT VOLUME

The redevelopment design meets Standard 4, comparing post-development to pre-development conditions. Currently there is no water quality treatment of stormwater on the existing developed site. The proposed water quality treatment of the post-developed site exceeds treatment conditions from the pre-developed site.
$V_{W Q}=\left(D_{W Q} / 12\right.$ inches/foot $) *\left(A_{I M P} * 43,560\right.$ square feet/acre $)$
$V_{W Q}=$ Required Water Quality Volume (in cubic feet)
$D_{W Q}=$ Water Quality Depth: one-inch for discharges within a Zone II or Interim Wellhead Protection Area, to or near another critical area, runoff from a LUHPPL, or exfiltration to soils with infiltration rate greater than 2.4 inches/hour or greater; $1 / 2$-inch for discharges near or to other areas.
$A_{\text {IMP }}=$ Impervious Area (in acres)
The site is not located in soils with an infiltration rate greater than 2.4 inches/hour so a Water Quality Depth of $1 / 2$-inch is required.
$\mathrm{V}_{\mathrm{WQ}}=(0.5$ inch $/ 12$ inches $/$ foot $) *(60,400$ square feet $)=2,517 \mathrm{CF}$
Proposed:
Crushed Stone Sediment Forebay Infiltration Systems 1-3 (below outlets)
System \#1 = 532 CF
System \#2 $=548 \mathrm{CF}$
System \#3 $=1,657 \mathrm{CF}$
Total Recharge Volume Provided $=2,737 \mathrm{CF}>2,517 \mathrm{CF}$

STANDARD 5 LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS

The land use is not considered a higher potential pollutant load.

STANDARD 6. CRITICAL AREAS

The land use is not located within a critical area.

STANDARD 7. REDEVELOPMENT PROJECT

"A redevelopment project is required to meet the following Stormwater Management Standards only to the maximum extent practicable: Standard 2, Standard 3, and the pretreatment and structural stormwater best management practice requirements of Standards 4, 5, and 6. Existing stormwater discharges shall comply
with Standard 1 only to the maximum extent practicable. A redevelopment project shall also comply with all other requirements of the Stormwater Management Standards and improve existing conditions."

The project is a redevelopment project. The project proposes to pave an existing compacted gravel area. Post development peak rates and volumes have been reduced through the proposed infiltration systems. The proposed redevelopment is an improvement from the predeveloped conditions.

STANDARD 8. CONSTRUCTION PERIOD CONTROLS

A plan to control construction-related impacts, including erosion, sedimentation, and other pollutant sources during construction and land disturbance activities (construction period erosion, sedimentation, and pollution prevention plan) shall be developed and implemented.

The proposed project will not disturb more than one acre of land and is not required to obtain coverage under the NPDES Construction General Permit issued by EPA and prepare a Stormwater Pollution Plan (see attached O\&M Plan during construction)

STANDARD 9. LONG-TERM OPERATION AND MAINTENANCE (O\&M) PLAN

A Long-Term Operation and Maintenance (O\&M) Plan shall be developed and implemented to ensure that stormwater management systems function as designed.

The Long-Term Operation and Maintenance Plan shall at a minimum include:

1. Stormwater management system(s) owners;
2. The party or parties responsible for operation and maintenance, including how future property owners will be notified of the presence of the stormwater management system and the requirement for proper operation and maintenance;
3. The routine and non-routine maintenance tasks to be undertaken after construction is complete and a schedule for implementing those tasks;
4. A plan that is drawn to scale and shows the location of all stormwater BMPs in each treatment train along with the discharge point;
5. A description and delineation of public safety features; and
6. An estimated operations and maintenance budget.

STANDARD 10. ILLICIT DISCHARGES PROHIBITED

"All illicit discharges to the stormwater management system are prohibited."

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals. ${ }^{1}$ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8^{2}
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

[^1]
Checklist for Stormwater Report

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development
区 Redevelopment
\square Mix of New Development and Redevelopment

Checklist for Stormwater Report

Checklist（continued）

LID Measures：Stormwater Standards require LID measures to be considered．Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project：

No disturbance to any Wetland Resource Areas
\square Site Design Practices（e．g．clustered development，reduced frontage setbacks）
Reduced Impervious Area（Redevelopment Only）
邓 Minimizing disturbance to existing trees and shrubs
\square LID Site Design Credit Requested：

Credit 1

Credit 2
Credit 3Use of＂country drainage＂versus curb and gutter conveyance and pipe
Bioretention Cells（includes Rain Gardens）
\square Constructed Stormwater Wetlands（includes Gravel Wetlands designs）Treebox FilterWater Quality SwaleGrass ChannelGreen Roof

```
Crushed stone infiltration trenches
```

区 Other（describe）：

Standard 1：No New Untreated Discharges

$\boxed{\square}$ No new untreated discharges
\square Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth

凹 Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included．

Checklist for Stormwater Report

Checklist (continued)

Standard 2: Peak Rate Attenuation

Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
\square Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

X Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

X Soil Analysis provided.
X Required Recharge Volume calculation provided.
\square Required Recharge volume reduced through use of the LID site Design Credits.
\triangle Sizing the infiltration, BMPs is based on the following method: Check the method used.
区 Static
\square Simple Dynamic
\square Dynamic Field ${ }^{1}$

Runoff from all impervious areas at the site discharging to the infiltration BMP.
X Runoff from all impervious areas at the site is not discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
X Recharge BMPs have been sized to infiltrate the Required Recharge Volume only to the maximum extent practicable for the following reason:
\square Site is comprised solely of C and D soils and/or bedrock at the land surface
\square M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
\square Solid Waste Landfill pursuant to 310 CMR 19.000
\square Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.

X Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
\square Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

[^2]
Checklist for Stormwater Report

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.

X A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
x Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:

X is within the Zone II or Interim Wellhead Protection Area
\square is near or to other critical areas
\triangle is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
\square involves runoff from land uses with higher potential pollutant loads.
The Required Water Quality Volume is reduced through use of the LID site Design Credits.
\triangle Calculations documenting that the treatment train meets the 80\% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist for Stormwater Report

Checklist (continued)

Standard 4: Water Quality (continued)

x The BMP is sized (and calculations provided) based on:
X The $1 / 2$ " or 1 " Water Quality Volume or
\square The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.

The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.

X A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

\square The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
\square The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.The NPDES Multi-Sector General Permit does not cover the land use.
\square LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.All exposure has been eliminated.
\square All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
\square The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
\square Critical areas and BMPs are identified in the Stormwater Report.

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable
\triangle The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

\square Limited Project

\square Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
\square Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
\square Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
Bike Path and/or Foot Path
® Redevelopment Project
Redevelopment portion of mix of new and redevelopment.
\boxed{x} Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
\square The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2,3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

区 A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist for Stormwater Report

Checklist（continued）

Standard 8：Construction Period Pollution Prevention and Erosion and Sedimentation Control （continued）

The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application．A Construction Period Pollution Prevention and Erosion and Sedimentation Control has not been included in the Stormwater Report but will be submitted before land disturbance begins．
\square The project is not covered by a NPDES Construction General Permit．
\square The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report．
\square The project is covered by a NPDES Construction General Permit but no SWPPP been submitted． The SWPPP will be submitted BEFORE land disturbance begins．

Standard 9：Operation and Maintenance Plan

The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information：

凹 Name of the stormwater management system owners；
$\boxed{\text { Party responsible for operation and maintenance；}}$
区 Schedule for implementation of routine and non－routine maintenance tasks；
凹 Plan showing the location of all stormwater BMPs maintenance access areas；
\square Description and delineation of public safety features；
区 Estimated operation and maintenance budget；and
■ Operation and Maintenance Log Form．
The responsible party is not the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions：
\square A copy of the legal instrument（deed，homeowner＇s association，utility trust or other legal entity） that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs；
\square A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions．

Standard 10：Prohibition of Illicit Discharges

The Long－Term Pollution Prevention Plan includes measures to prevent illicit discharges；
凹 An Illicit Discharge Compliance Statement is attached；
\square NO Illicit Discharge Compliance Statement is attached but will be submitted prior to the discharge of any stormwater to post－construction BMPs．

Section II

Overall Site Analysis

Stormwater-Galley Systems

Prepared by Grady Consulting LLC
HydroCAD® 10.00-25 s/n 09955 © 2019 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area $(\mathrm{sq-ft})$	CN	Description (subcatchment-numbers)
27,469	61	$>75 \%$ Grass cover, Good, HSG B (1E, 1P, 2E, 2P, 5P)
918	85	Crushed Stone, HSG B (5P, 6P)
1,461	85	CrushedStone, HSG B (3P)
43,331	96	Gravel surface, HSG B (1E, 2E)
78,466	98	Paved parking, HSG B (1E, 2E, 3P, 5P, 6P)
19,574	98	Roofs, HSG B (4P)
19,587	98	Unconnected roofs, HSG B (2E)
37,658	55	Woods, Good, HSG B (1E, 1P, 2E, 2P)
$\mathbf{2 2 8 , 4 6 4}$	$\mathbf{8 6}$	TOTAL AREA

Stormwater-Galley Systems

Prepared by Grady Consulting LLC
HydroCAD® 10.00-25 s/n 09955 © 2019 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area $(\mathrm{sq}-\mathrm{ft})$	Soil Group	Subcatchment Numbers
0	HSG A	
228,464	HSG B	1E, 1P, 2E, 2P, 3P, 4P, 5P, 6P
0	HSG C	
0	HSG D	
0	Other	
228,464		TOTAL AREA

Stormwater-Galley Systems

Prepared by Grady Consulting LLC
HydroCAD® 10.00-25 s/n 09955 © 2019 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

HSG-A $(\mathrm{sq}-\mathrm{ft})$	HSG-B $(\mathrm{sq}-\mathrm{ft})$	HSG-C $(\mathrm{sq}-\mathrm{ft})$	HSG-D $(\mathrm{sq}-\mathrm{ft})$	Other $(\mathrm{sq}-\mathrm{ft})$	Total $(\mathrm{sq}-\mathrm{ft})$	Ground Cover
0	27,469	0	0	0	27,469	$>75 \%$ Grass
						cover, Good
0	918	0	0	0	918	Crushed Stone
0	1,461	0	0	0	1,461	CrushedStone
0	43,331	0	0	0	43,331	Gravel surface
0	78,466	0	0	0	78,466	Paved parking
0	19,574	0	0	0	19,574	Roofs
0	19,587	0	0	0	19,587	Unconnected
			0			roofs
0	37,658	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2 2 8 , 4 6 4}$	TOTAL AREA

Time span $=0.10-24.00 \mathrm{hrs}, \mathrm{dt}=0.02 \mathrm{hrs}, 1196$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1E: To Southerly Wetland Runoff Area=43,251 sf 38.57% Impervious Runoff Depth >1.49 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff=1.71 cfs $5,353 \mathrm{cf}$

Subcatchment 1P: To Southerly Wetland	Runoff Area $=16,727 \mathrm{sf} \quad 0.00 \%$ Impervious Runoff Depth >0.38 " Tc $=6.0 \mathrm{~min} \quad \mathrm{CN}=58$ Runoff $=0.09 \mathrm{cfs} 530 \mathrm{cf}$
Subcatchment 2E: To Westerly	Runoff Area=71,205 sf 29.43\% Impervious Runoff Depth >2.01 "
	Tc $=6.0 \mathrm{~min}$ UI Adjusted $\mathrm{CN}=87$ Runoff $=3.84 \mathrm{cfs} 11,929 \mathrm{cf}$
Subcatchment 2P: To Westerly Wetland	Runoff Area $=12,938$ sf 0.00% Impervious Runoff Depth >0.31 "
	Tc=6.0 min CN=56 Runoff $=0.04$ cfs 339 cf

Subcatchment 3P: Pavement to Infiltration Runoff Area=39,943 sf 96.34% Impervious Runoff Depth >3.07 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=$=2.94 \mathrm{cfs} 10,235 \mathrm{cf}$

Subcatchment 4P: Roof to Infiltration

 Runoff Area $=19,574$ sf 100.00% Impervious Runoff Depth >3.07 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=1.44 cfs $5,015 \mathrm{cf}$Subcatchment 5P: Pavement to Infiltration Runoff Area=15,930 sf 84.93% Impervious Runoff Depth>2.55" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=93$ Runoff=1.06 cfs $3,384 \mathrm{cf}$

Subcatchment 6P: Pavement to Infiltration Runoff Area=8,896 sf 94.49% Impervious Runoff Depth >2.96 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff=0.65 cfs 2,197 cf

Pond 7P: Crushed Stone Trench WQ and Peak Elev=238.56' Storage=2,217 cf Inflow=1.06 cfs 3,384 cf Discarded=0.03 cfs 1,445 cf Primary=0.00 cfs 0 cf Outflow=0.03 cfs $1,445 \mathrm{cf}$

Pond 8P: Crushed Stone Trench WQ and Peak Elev=231.29' Storage=1,180 cf Inflow=0.65 cfs 2,197 cf Discarded $=0.03 \mathrm{cfs} 1,412 \mathrm{cf}$ Primary $=0.00 \mathrm{cfs} 0 \mathrm{cf}$ Outflow=0.03 cfs $1,412 \mathrm{cf}$

Pond 9P: ADS N12 Infiltration Trench System Peak Elev=234.95' Storage=153 cf Inflow=1.44 cfs 5,015 cf Discarded=0.01 cfs 725 cf Primary=1.37 cfs 4,270 cf Outflow=1.38 cfs $4,995 \mathrm{cf}$

Pond 10P: Crushed Stone Trench WQ and Peak Elev=233.03' Storage=6,351 cf Inflow=4.29 cfs 14,504 cf Discarded $=0.07$ cfs 4,625 cf Primary=3.73 cfs 4,178 cf Outflow=3.81 cfs $8,803 \mathrm{cf}$

Link 11L: To Southerly Wetland

Link 12L: To Westerly Wetland
Inflow=0.09 cfs 530 cf Primary=0.09 cfs 530 cf

Inflow=3.78 cfs 4,517 cf Primary $=3.78$ cfs 4,517 cf

$$
\begin{array}{r}
\text { Total Runoff Area }=228,464 \mathrm{sff} \begin{array}{r}
\text { Runoff Volume }=38,982 \mathrm{cf} \quad \begin{array}{c}
\text { Average Runoff Depth }=2.05 " \\
48.51 \%
\end{array} \text { Pervious }=110,837 \mathrm{sf} \\
51.49 \% \text { Impervious }=117,627 \mathrm{sf}
\end{array}
\end{array}
$$

Summary for Subcatchment 1E: To Southerly Wetland

Runoff $=\quad 1.71$ cfs @ 12.09 hrs, Volume $=\quad 5,353 \mathrm{cf}$, Depth> 1.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Year Rainfall=3.31"

Area (sf)	CN	Description
12,540	61	>75\% Grass cover, Good, HSG B
16,680	98	Paved parking, HSG B
7,251	96	Gravel surface, HSG B
6,780	55	Woods, Good, HSG B

Summary for Subcatchment 1P: To Southerly Wetland

Runoff $=\quad 0.09$ cfs @ 12.14 hrs, Volume= 530 cf, Depth> 0.38"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Year Rainfall=3.31"

	rea (sf)	CN D	escription		
	$\begin{aligned} & 9,463 \\ & 7,264 \end{aligned}$	$\begin{array}{ll} 61 & > \\ 55 & W \end{array}$	>75\% Grass cover, Good, HSG B Woods, Good, HSG B		
	$\begin{aligned} & 16,727 \\ & 16,727 \end{aligned}$	58 W	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0		Direct Entry,			
Subcatchment 1P: To Southerly Wetland					

Summary for Subcatchment 2E: To Westerly Wetland/Property Line

Runoff $=\quad 3.84$ cfs @ 12.09 hrs, Volume $=11,929$ cf, Depth> 2.01"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Year Rainfall=3.31"

Summary for Subcatchment 2P: To Westerly Wetland

Runoff $=\quad 0.04$ cfs @ 12.28 hrs, Volume= 339 cf, Depth> 0.31"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Year Rainfall=3.31"

Area (sf)	CN	Description
2,281	61	$>75 \%$ Grass cover, Good, HSG B
10,657	55	Woods, Good, HSG B

Subcatchment 2P: To Westerly Wetland

Summary for Subcatchment 3P: Pavement to Infiltration System

Runoff $=\quad 2.94$ cfs @ 12.08 hrs, Volume= $\quad 10,235$ cf, Depth> 3.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Year Rainfall=3.31"

	Area (sf)	CN D	Description		
*	$\begin{array}{r} \hline 38,482 \\ 1,461 \\ \hline \end{array}$	$\begin{array}{ll} 98 & P \\ 85 & C \\ \hline \end{array}$	Paved parking, HSG B CrushedStone, HSG B		
	$\begin{array}{r} \hline 39,943 \\ 1,461 \\ 38,482 \end{array}$	$98 \quad \begin{array}{r}\text { V } \\ \\ \\ \\ 9\end{array}$	Weighted Average 3.66\% Pervious Area 96.34\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry,

Subcatchment 3P: Pavement to Infiltration System

Summary for Subcatchment 4P: Roof to Infiltration System

Runoff $=\quad 1.44$ cfs @ 12.08 hrs, Volume $=\quad 5,015$ cf, Depth> 3.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Year Rainfall=3.31"

Area (sf)		CN	Description		
19,574		98 Roofs, HSG B			
19,574		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					Direct Entry,

Subcatchment 4P: Roof to Infiltration System

Summary for Subcatchment 5P: Pavement to Infiltration System

Runoff $=\quad 1.06$ cfs @ 12.09 hrs, Volume $=\quad 3,384$ cf, Depth> 2.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Year Rainfall=3.31"

	Area (sf)	CN D	Description		
	13,529	98 P	Paved parking, HSG B		
	1,973	$61>$	>75\% Grass cover, Good, HSG B		
*	428	85	Crushed Stone, HSG B		
	15,930	93 V	Weighted Average		
	2,401		15.07\% Pervious Area		
	13,529		84.93\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array} \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 5P: Pavement to Infiltration System

Summary for Subcatchment 6P: Pavement to Infiltration System

Runoff $=\quad 0.65$ cfs @ 12.08 hrs, Volume= $2,197 \mathrm{cf}$, Depth> 2.96"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 2-Year Rainfall=3.31"

	Area (sf)	CN	Description		
*	$\begin{array}{r} 8,406 \\ 490 \end{array}$	$\begin{array}{ll} 98 \\ 85 \end{array}$	Paved parking, HSG B Crushed Stone, HSG B		
	$\begin{array}{r} \hline 8,896 \\ 490 \\ 8,406 \end{array}$	$97 \quad \begin{array}{r} \\ \\ \\ \\ \\ 9\end{array}$	Weighted Average 5.51\% Pervious Area 94.49\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry,

Subcatchment 6P: Pavement to Infiltration System

Summary for Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Inflow Area =	15,930 s	84.93\% Impervious,	Inflow Depth > 2.55" for 2-Year event
Inflow	1.06 cfs @	12.09 hrs , Volume=	3,384 cf
Outflow	0.03 cfs @	12.00 hrs , Volume=	1,445 cf, Atten= 98\%, Lag= 0.0 min
Discarded	0.03 cfs @	12.00 hrs , Volume=	1,445 cf
Primary	0.00 cfs @	0.10 hrs , Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 238.56' @ 16.78 hrs Surf.Area= 1,115 sf Storage= 2,217 cf
Plug-Flow detention time $=302.8 \mathrm{~min}$ calculated for $1,445 \mathrm{cf}$ (43% of inflow)
Center-of-Mass det. time $=181.2 \mathrm{~min}(972.1-790.9)$

Volume	Invert	Avail.Storage	Storage Description
\#1	$236.00{ }^{\prime}$	532 cf	$3.50^{\prime} \mathrm{W} \times 95.00^{\prime} \mathrm{L} \times 4.00^{\prime} \mathrm{H}$ Prismatoid 1,330 cf Overall $\times 40.0 \%$ Voids
\#2A	234.25'	937 cf	8.50'W x 92.00'L x 4.75'H Field A
			3,715 cf Overall - 1,371 cf Embedded $=2,343$ cf $\times 40.0 \%$ Voids
\#3A	234.75'	1,020 cf	Concrete Galley $4 \times 4 \times 4.25 \times 22$ Inside \#2 Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0 \mathrm{H} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
		2,490 cf	Total Available Storage
Stora	ge Group A	ated with Cham	er Wizard
Device	Routing	Invert Out	t Devices
\#1	Primary	239.00' 95.0	Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)
\#2	Discarded	234.25' 1.02	in/hr Exfiltration over Surface area

Primary OutFlow Max=0.00 cfs @ 0.10 hrs HW=234.25' (Free Discharge)
亡1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1 - Chamber Wizard Field A
Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0$ " $\mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
22 Chambers/Row x 4.00' Long $=88.00^{\prime}$ Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=92.00^{\prime}$ Base Length
1 Rows x 54.0" Wide + 24.0" Side Stone x $2=8.50$ ' Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

22 Chambers $\times 46.4$ cf $=1,020.4$ cf Chamber Storage
22 Chambers x $62.3 \mathrm{cf}=1,371.3 \mathrm{cf}$ Displacement
3,714.5 cf Field - 1,371.3 cf Chambers $=2,343.2$ cf Stone $\times 40.0 \%$ Voids $=937.3$ cf Stone Storage
Chamber Storage + Stone Storage $=1,957.7 \mathrm{cf}=0.045$ af
Overall Storage Efficiency $=52.7 \%$
Overall System Size $=92.00^{\prime} \times 8.50^{\prime} \times 4.75^{\prime}$
22 Chambers @ \$ 0.00 /ea = \$ 0.00
137.6 cy Field Excavation @ \$ 10.00 /cy = \$ 1,375.74
86.8 cy Stone @ \$ 30.00 /cy = \$ 2,603.57

Total Cost $=\$ 3,979.31$

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1
Stage-Discharge

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Summary for Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Inflow Area =	8,896 sf,	94.49\% Impervious,	Inflow Depth > 2.96" for 2-Year event
Inflow	0.65 cfs @	12.08 hrs , Volume=	2,197 cf
Outflow	0.03 cfs @	12.42 hrs , Volume=	1,412 cf, Atten= 96\%, Lag= 20.2 min
Discarded =	0.03 cfs @	12.42 hrs , Volume=	1,412 cf
Primary	0.00 cfs @	0.10 hrs , Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 231.29' @ 14.68 hrs Surf.Area= 1,208 sf Storage= 1,180 cf
Plug-Flow detention time $=255.1 \mathrm{~min}$ calculated for 1,412 cf (64% of inflow)
Center-of-Mass det. time $=155.2 \mathrm{~min}(919.9-764.6)$

Primary OutFlow Max=0.00 cfs @ 0.10 hrs HW=228.75' (Free Discharge)
亡1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2 - Chamber Wizard Field A

Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0$ " $\mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
23 Chambers/Row $\times 4.00$ ' Long $=92.00^{\prime}$ Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=96.00^{\prime}$ Base Length
1 Rows x 54.0" Wide + 24.0" Side Stone x $2=8.50$ ' Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

23 Chambers $\times 46.4$ cf $=1,066.8$ cf Chamber Storage
23 Chambers $\times 62.3 \mathrm{cf}=1,433.6$ cf Displacement
3,876.0 cf Field - 1,433.6 cf Chambers $=2,442.4$ cf Stone $\times 40.0 \%$ Voids $=977.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,043.7 \mathrm{cf}=0.047$ af
Overall Storage Efficiency $=52.7 \%$
Overall System Size $=96.00^{\prime} \times 8.50^{\prime} \times 4.75^{\prime}$
23 Chambers @ \$ 0.00 /ea = \$ 0.00
143.6 cy Field Excavation @ \$ 10.00 /cy = \$ 1,435.56
90.5 cy Stone @ \$ 30.00 /cy = \$ 2,713.75

Total Cost $=\$ 4,149.31$

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Summary for Pond 9P: ADS N12 Infiltration Trench System \#4

Inflow Area =	19,574	00.00\% Impervious,	Inflow Depth > 3.07" for 2-Year event
Inflow	1.44 cfs @	12.08 hrs , Volume=	5,015 cf
Outflow	1.38 cfs @	12.11 hrs, Volume=	$4,995 \mathrm{cf}$, Atten= 4\%, Lag= 1.4 min
Discarded =	0.01 cfs @	3.92 hrs , Volume=	725 cf
Primary	1.37 cfs @	12.11 hrs, Volume=	4,270 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev=234.95' @ 12.11 hrs Surf.Area= 400 sf Storage= 153 cf
Plug-Flow detention time $=7.8 \mathrm{~min}$ calculated for $4,995 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=5.0 \mathrm{~min}(760.2-755.2)$

Volume	Invert	Avail.Storage	Storage Description
\#1A	234.00'	608 cf	4.21'W x 95.00'L x 4.04'H Field A
			1,616 cf Overall - 97 cf Embedded $=1,519$ cf $\times 40.0 \%$ Voids
\#2A	235.17'	75 cf	ADS N-12 12" x 4 Inside \#1
			Inside= 12.2"W $\times 12.2 \mathrm{H}=>0.81 \mathrm{sf} \times 20.00 \mathrm{~L}=16.2 \mathrm{cf}$
			Outside $=14.5 \mathrm{~W} \mathrm{~W} \times 14.5 \mathrm{H} \mathrm{H}=>1.05 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=20.9 \mathrm{cf}$
			Row Length Adjustment= +13.00' $\times 0.81 \mathrm{sf} \times 1$ rows
		683 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	234.00'	1.020 in/hr Exfiltration over Surface area
\#2	Primary	$234.10{ }^{\prime}$	10.0" Round Culvert
			L= 155.0' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=234.10' / 232.00' S=0.0135 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Corrugated PP, smooth interior, Flow Area= 0.55 sf

Discarded OutFlow Max=0.01 cfs @ 3.92 hrs HW=234.04' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=1.37 cfs @ 12.11 hrs HW=234.95' (Free Discharge)
—2=Culvert (Inlet Controls $1.37 \mathrm{cfs} @ 2.50 \mathrm{fps}$)

Pond 9P: ADS N12 Infiltration Trench System \#4 - Chamber Wizard Field A

Chamber Model = ADS N-12 12" (ADS N-12® Pipe)
Inside= 12.2"W x 12.2"H => $0.81 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=16.2 \mathrm{cf}$
Outside $=14.5^{\prime \prime} \mathrm{W} \times 14.5^{\prime \prime} \mathrm{H}=>1.05 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=20.9 \mathrm{cf}$
Row Length Adjustment= +13.00' x 0.81 sf $\times 1$ rows
4 Chambers/Row x 20.00' Long +13.00' Row Adjustment = 93.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2$ = 95.00' Base Length

1 Rows x 14.5" Wide + 18.0" Side Stone x 2 = 4.21' Base Width
14.0" Base + 14.5" Chamber Height + 20.0" Cover = 4.04' Field Height

4 Chambers $\times 16.2$ cf +13.00' Row Adjustment $\times 0.81$ sf $\times 1$ Rows $=75.3$ cf Chamber Storage
4 Chambers $\times 20.9$ cf $+13.00^{\prime}$ Row Adjustment $\times 1.05 \mathrm{sf} \times 1$ Rows $=97.3 \mathrm{cf}$ Displacement
1,616.2 cf Field -97.3 cf Chambers $=1,518.9$ cf Stone $\times 40.0 \%$ Voids $=607.6$ cf Stone Storage
Chamber Storage + Stone Storage $=682.9 \mathrm{cf}=0.016$ af
Overall Storage Efficiency $=42.3 \%$
Overall System Size $=95.00^{\prime} \times 4.21^{\prime} \times 4.04{ }^{\prime}$
4 Chambers @ \$ 0.00 /ea = \$ 0.00
59.9 cy Field Excavation @ \$ 10.00 /cy = \$ 598.61
56.3 cy Stone @ \$ 30.00 /cy = \$ 1,687.67

Total Cost = \$ 2,286.28

Pond 9P: ADS N12 Infiltration Trench System \#4

Pond 9P: ADS N12 Infiltration Trench System \#4

Pond 9P: ADS N12 Infiltration Trench System \#4

Summary for Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Inflow Area =	59	perviou	Inflow Depth > 2.92' for 2-Year event
Inflow	4.29 cfs @	12.09 hrs , Volume=	14,504 cf
Outflow	3.81 cfs @	12.20 hrs , Volume=	8,803 cf, Atten= 11\%, Lag= 6.8 min
Discarded =	0.07 cfs @	10.98 hrs, Volume=	4,625 cf
Primary	3.73 cfs @	12.20 hrs , Volume=	4,178 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 233.03' @ 12.20 hrs Surf.Area= 3,107 sf Storage= 6,351 cf
Plug-Flow detention time $=188.3 \mathrm{~min}$ calculated for $8,803 \mathrm{cf}$ (61% of inflow)
Center-of-Mass det. time $=90.1 \mathrm{~min}(844.8-754.7)$

Volume	Invert	Avail.Storage	Storage Description
\#1	$230.25{ }^{\prime}$	1,658 cf	$5.00^{\prime} \mathrm{W} \times 195.00^{\prime} \mathrm{L} \times 4.25$ 'H $^{\prime} \mathrm{H}$ Prismatoid 4,144 cf Overall $\times 40.0 \%$ Voids
\#2A	229.00'	2,056 cf	$13.00^{\prime} \mathrm{W}$ x $164.00^{\prime} \mathrm{L} \times 4.75^{\prime} \mathrm{H}$ Field A 10,127 cf Overall $-4,987$ cf Embedded $=5,140$ cf $\times 40.0 \%$ Voids
\#3A	$229.50{ }^{\prime}$	3,710 cf	Concrete Galley $4 \times 4 \times 4.25 \times 80$ Inside \#2 Inside= 42.2"W x 45.0"H => $13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside=54.0"W x 51.0 " $\mathrm{H}=>15.58 \mathrm{sf} \times 4.00 \mathrm{~L}=62.3 \mathrm{cf}$ 80 Chambers in 2 Rows
7,424 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	et Devices
\#1	Primary	233.00 190.0	0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
\#2	Discarded	229.00' 1.02	0 in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.07 cfs @ 10.98 hrs HW=230.25' (Free Discharge)
$\mathrm{L}_{\mathbf{2}}=$ Exfiltration (Exfiltration Controls 0.07 cfs)
Primary OutFlow Max=2.83 cfs @ 12.20 hrs HW=233.03' (Free Discharge)
—1=Sharp-Crested Rectangular Weir (Weir Controls 2.83 cfs @ 0.54 fps)

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3 - Chamber Wizard Field A

Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0$ " $\mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0 \mathrm{O} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
40 Chambers/Row x 4.00' Long $=160.00^{\prime}$ Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=164.00$ ' Base Length
2 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 13.00' Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

80 Chambers $\times 46.4$ cf $=3,710.5$ cf Chamber Storage
80 Chambers x 62.3 cf $=4,986.5$ cf Displacement
10,127.0 cf Field $-4,986.5$ cf Chambers $=5,140.5$ cf Stone $\times 40.0 \%$ Voids $=2,056.2$ cf Stone Storage
Chamber Storage + Stone Storage $=5,766.7 \mathrm{cf}=0.132$ af
Overall Storage Efficiency $=56.9 \%$
Overall System Size $=164.00^{\prime} \times 13.00^{\prime} \times 4.75^{\prime}$
80 Chambers @ \$ 0.00 /ea = \$ 0.00
375.1 cy Field Excavation @ \$ 10.00 /cy = \$ 3,750.74
190.4 cy Stone @ \$ 30.00 /cy = \$ 5,711.65

Total Cost $=\$ 9,462.39$

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Summary for Link 11L: To Southerly Wetland

Inflow Area $=\quad 41,553$ sf, 52.79% Impervious, Inflow Depth > 0.15" for 2-Year event Inflow $=0.09 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume= 530 cf Primary $=0.09$ cfs @ 12.14 hrs , Volume $=530 \mathrm{cf}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Link 11L: To Southerly Wetland

Summary for Link 12L: To Westerly Wetland

Inflow Area = Inflow = Primary =

72,455 sf, 80.13% Impervious, Inflow Depth > 0.75" for 2-Year event 3.78 cfs @ 12.20 hrs, Volume= 4,517 cf 3.78 cfs @ 12.20 hrs , Volume=
$4,517 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Link 12L: To Westerly Wetland

Time span $=0.10-24.00 \mathrm{hrs}, \mathrm{dt}=0.02 \mathrm{hrs}, 1196$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1E: To Southerly Wetland Runoff Area=43,251 sf 38.57% Impervious Runoff Depth >2.85 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=3.31 \mathrm{cfs} 10,259 \mathrm{cf}$

Subcatchment 1P: To Southerly Wetland	Runoff Area $=16,727$ sf 0.00% Impervious Runoff Depth >1.14 "
	Tc=6.0 min CN=58 Runoff=0.44 cfs 1,588 cf
Subcatchment 2E: To Westerly	Runoff Area=71,205 sf 29.43\% Impervious Runoff Depth >3.52 "
	Tc=6.0 min Ul Adjusted CN=87 Runoff=6.62 cfs 20,869 cf
Subcatchment 2P: To Westerly Wetland	Runoff Area $=12,938$ sf 0.00% Impervious Runoff Depth >1.01 "
	$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN=56} \mathrm{Runoff}=0.29 \mathrm{cfs} 1,093 \mathrm{cf}$

Subcatchment 3P: Pavement to Infiltration Runoff Area=39,943 sf 96.34% Impervious Runoff Depth>4.71" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=4.43 cfs $15,677 \mathrm{cf}$

Subcatchment 4P: Roof to Infiltration Runoff Area=19,574 sf 100.00\% Impervious Runoff Depth>4.71" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=2.17 cfs 7,682 cf

Subcatchment 5P: Pavement to Infiltration Runoff Area=15,930 sf 84.93% Impervious Runoff Depth >4.15 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=93$ Runoff=$=1.67 \mathrm{cfs} 5,503 \mathrm{cf}$

Subcatchment 6P: Pavement to Infiltration Runoff Area=8,896 sf 94.49% Impervious Runoff Depth>4.59" Tc=6.0 min CN=97 Runoff=0.98 cfs 3,406 cf

Pond 7P: Crushed Stone Trench WQ and Peak Elev=239.02' Storage=2,360 cf Inflow=1.67 cfs 5,503 cf Discarded= $=0.03$ cfs $1,571 \mathrm{cf}$ Primary=1.12 cfs $1,680 \mathrm{cf}$ Outflow=1.14 cfs 3,251 cf

Pond 8P: Crushed Stone Trench WQ and Peak Elev=232.74' Storage=2,094 cf Inflow=0.98 cfs 3,406 cf Discarded $=0.03 \mathrm{cfs} 1,711 \mathrm{cf}$ Primary $=0.00 \mathrm{cfs} 0 \mathrm{cf}$ Outflow=0.03 cfs $1,711 \mathrm{cf}$

Pond 9P: ADS N12 Infiltration Trench System Peak Elev=235.45' Storage=234 cf Inflow=2.17 cfs 7,682 cf Discarded=0.01 cfs 760 cf Primary=2.00 cfs 6,898 cf Outflow=2.01 cfs 7,658 cf

Pond 10P: Crushed Stone Trench WQ and Peak Elev=233.04' Storage=6,375 cf Inflow=6.37 cfs 22,575 cf Discarded $=0.07$ cfs 5,052 cf Primary $=6.30$ cfs 11,358 cf Outflow=6.37 cfs $16,410 \mathrm{cf}$

Link 11L: To Southerly Wetland Inflow=1.42 cfs 3,269 cf

Link 12L: To Westerly Wetland
Inflow=6.58 cfs $12,452 \mathrm{cf}$ Primary=6.58 cfs 12,452 cf

$$
\begin{array}{r}
\text { Total Runoff Area }=228,464 \mathrm{sff} \begin{array}{r}
\text { Runoff Volume }=66,077 \mathrm{cf} \quad \begin{array}{c}
\text { Average Runoff Depth }=3.47 " \\
48.51 \%
\end{array} \text { Pervious }=110,837 \mathrm{sf} \quad 51.49 \% \text { Impervious }=117,627 \mathrm{sf}
\end{array}
\end{array}
$$

Summary for Subcatchment 1E: To Southerly Wetland

Runoff $=\quad 3.31$ cfs @ 12.09 hrs, Volume= $\quad 10,259$ cf, Depth> 2.85"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10 -Year Rainfall=4.95"

Summary for Subcatchment 1P: To Southerly Wetland

Runoff $=\quad 0.44$ cfs @ 12.10 hrs, Volume $=\quad 1,588 \mathrm{cf}$, Depth> 1.14"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10 -Year Rainfall=4.95"

Summary for Subcatchment 2E: To Westerly Wetland/Property Line

Runoff $=\quad 6.62$ cfs @ 12.09 hrs, Volume= 20,869 cf, Depth> 3.52"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-Year Rainfall=4.95"

Summary for Subcatchment 2P: To Westerly Wetland

Runoff $=\quad 0.29$ cfs @ 12.11 hrs, Volume $=\quad 1,093 \mathrm{cf}$, Depth> 1.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-Year Rainfall=4.95"

	Area (sf)	CN D	Description		
	$\begin{array}{r} 2,281 \\ 10,657 \\ \hline \end{array}$	$\begin{array}{ll} 61 & > \\ 55 & \mathrm{~h} \\ \hline \end{array}$	>75\% Grass cover, Good, HSG B Woods, Good, HSG B		
	$\begin{aligned} & \hline 12,938 \\ & 12,938 \end{aligned}$	56	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description
6.0					

Subcatchment 2P: To Westerly Wetland

Summary for Subcatchment 3P: Pavement to Infiltration System

Runoff $=\quad 4.43$ cfs @ 12.08 hrs, Volume= $\quad 15,677$ cf, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-Year Rainfall=4.95"

	Area (sf)	CN D	Description		
*	$\begin{array}{r} \hline 38,482 \\ 1,461 \end{array}$	$\begin{array}{ll} \hline 98 & F \\ 85 & \end{array}$	Paved parking, HSG B CrushedStone, HSG B		
	$\begin{array}{r} \hline 39,943 \\ 1,461 \\ 38,482 \end{array}$	98	Weighted Average 3.66\% Pervious Area 96.34\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Subcatchment 3P: Pavement to Infiltration System

Summary for Subcatchment 4P: Roof to Infiltration System

Runoff $=\quad 2.17$ cfs @ 12.08 hrs, Volume $=\quad 7,682$ cf, Depth> 4.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-Year Rainfall=4.95"

	ea (sf)	CN Description			
	$19,574$	98	oofs, HSG		
$19,574$		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Subcatchment 4P: Roof to Infiltration System

Summary for Subcatchment 5P: Pavement to Infiltration System

Runoff $=\quad 1.67$ cfs @ 12.08 hrs, Volume= $5,503 \mathrm{cf}$, Depth> 4.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10-Year Rainfall=4.95"

	Area (sf)	CN D	Description		
	13,529	98 P	Paved parking, HSG B		
	1,973	$61>$	>75\% Grass cover, Good, HSG B		
*	428	85	Crushed Stone, HSG B		
	15,930	93 V	Weighted Average		
	2,401		15.07\% Pervious Area		
	13,529		84.93\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	$\begin{array}{r} \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \\ \hline \end{array} \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 5P: Pavement to Infiltration System

Summary for Subcatchment 6P: Pavement to Infiltration System

Runoff $=\quad 0.98$ cfs @ 12.08 hrs, Volume= 3,406 cf, Depth> 4.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 10 -Year Rainfall=4.95"

	Area (sf)	CN D	Description		
	$\begin{array}{r} 8,406 \\ 490 \end{array}$	$\begin{array}{ll} 98 & P \\ 85 & C \end{array}$	Paved parking, HSG B Crushed Stone, HSG B		
	$\begin{array}{r} \hline 8,896 \\ 490 \\ 8,406 \end{array}$	$97 \quad \begin{array}{r} \\ 5 \\ \\ \\ 9\end{array}$	Weighted Average 5.51\% Pervious Area 94.49\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry,

Subcatchment 6P: Pavement to Infiltration System

Summary for Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Inflow Area =	15,930	mervious,	Inflow Depth > 4.15" for 10-Year event
Inflow	1.67 cfs @	12.08 hrs , Volume=	5,503 cf
Outflow	1.14 cfs @	12.20 hrs , Volume=	3,251 cf, Atten $=32 \%$, Lag $=7.2 \mathrm{~min}$
Discarded =	0.03 cfs @	11.60 hrs , Volume=	1,571 cf
Primary	1.12 cfs @	12.20 hrs , Volume=	1,680 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 239.02' @ 12.20 hrs Surf.Area= 1,115 sf Storage= 2,360 cf
Plug-Flow detention time $=186.9 \mathrm{~min}$ calculated for $3,248 \mathrm{cf}$ (59% of inflow)
Center-of-Mass det. time= 83.0 min (861.0-778.0)

Volume	Invert	Avail.Storage	Storage Description
\#1	$236.00{ }^{\prime}$	532 cf	$3.50^{\prime} \mathrm{W} \times 95.00^{\prime} \mathrm{L} \times 4.00^{\prime} \mathrm{H}$ Prismatoid 1,330 cf Overall $\times 40.0 \%$ Voids
\#2A	234.25'	937 cf	8.50'W x 92.00'L x 4.75'H Field A
			3,715 cf Overall - 1,371 cf Embedded $=2,343$ cf $\times 40.0 \%$ Voids
\#3A	234.75'	1,020 cf	Concrete Galley $4 \times 4 \times 4.25 \times 22$ Inside \#2 Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0 \mathrm{H} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
		2,490 cf	Total Available Storage
Stora	ge Group A	ated with Cham	er Wizard
Device	Routing	Invert Out	t Devices
\#1	Primary	239.00' 95.0	Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)
\#2	Discarded	234.25' 1.02	in/hr Exfiltration over Surface area

Primary OutFlow Max=0.94 cfs @ 12.20 hrs HW=239.02' (Free Discharge)
L1=Sharp-Crested Rectangular Weir (Weir Controls 0.94 cfs @ 0.47 fps)

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1 - Chamber Wizard Field A
Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside= 42.2"W x 45.0"H => $13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
22 Chambers/Row x 4.00' Long = 88.00' Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=92.00^{\prime}$ Base Length
1 Rows x $54.0^{\prime \prime}$ Wide $+24.0^{\prime \prime}$ Side Stone x $2=8.50^{\prime}$ Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

22 Chambers $x 46.4$ cf $=1,020.4$ cf Chamber Storage
22 Chambers x 62.3 cf $=1,371.3$ cf Displacement
3,714.5 cf Field - 1,371.3 cf Chambers $=2,343.2$ cf Stone $\times 40.0 \%$ Voids $=937.3$ cf Stone Storage
Chamber Storage + Stone Storage $=1,957.7 \mathrm{cf}=0.045$ af
Overall Storage Efficiency $=52.7 \%$
Overall System Size $=92.00^{\prime} \times 8.50^{\prime} \times 4.75^{\prime}$
22 Chambers @ \$ 0.00 /ea = \$ 0.00
137.6 cy Field Excavation @ \$ 10.00 /cy = \$ 1,375.74
86.8 cy Stone @ \$ 30.00 /cy = \$ 2,603.57

Total Cost $=\$ 3,979.31$

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1
Stage-Discharge

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Summary for Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Inflow Area =	8,896 s	94.49\% Impervious	Inflow Depth > 4.59" for 10-Year event
Inflow	0.98 cfs @	12.08 hrs , Volume=	3,406 cf
Outflow	0.03 cfs @	12.08 hrs, Volume=	$1,711 \mathrm{cf}, \mathrm{Atten}=97 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Discarded =	0.03 cfs @	12.08 hrs, Volume=	1,711 cf
Primary	0.00 cfs @	0.10 hrs , Volume=	0 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 232.74' @ 15.91 hrs Surf.Area= 1,208 sf Storage= 2,094 cf
Plug-Flow detention time $=286.0 \mathrm{~min}$ calculated for $1,711 \mathrm{cf}$ (50% of inflow)
Center-of-Mass det. time $=161.7 \mathrm{~min}(917.1$ - 755.4)

Volume	Invert	Avail.Storage	Storage Description
\#1	$231.00{ }^{\prime}$	549 cf	4.00'W x 98.00'L x 3.50'H Prismatoid 1,372 cf Overall $\times 40.0 \%$ Voids
\#2A	228.75'	977 cf	8.50'W x 96.00'L x 4.75'H Field A 3,876 cf Overall - 1,434 cf Embedded $=2,442$ cf $\times 40.0 \%$ Voids
\#3A	229.25'	1,067 cf	Concrete Galley $4 \times 4 \times 4.25 \times 23$ Inside \#2 Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside= $54.0^{\prime \prime} \mathrm{W} \times 51.0$ " $\mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
2,593 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Out	t Devices
\#1	Primary	233.00 '98.0	Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)
\#2	Discarded	228.75' 1.02	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 12.08 hrs HW=231.10' (Free Discharge)
L-2=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.00 cfs @ 0.10 hrs HW=228.75' (Free Discharge)
亡1=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2 - Chamber Wizard Field A

Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0 \mathrm{H} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
23 Chambers/Row x 4.00' Long = 92.00' Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=96.00^{\prime}$ Base Length
1 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 8.50' Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

23 Chambers x 46.4 cf $=1,066.8$ cf Chamber Storage
23 Chambers x 62.3 cf $=1,433.6$ cf Displacement
$3,876.0$ cf Field $-1,433.6$ cf Chambers $=2,442.4$ cf Stone $\times 40.0 \%$ Voids $=977.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,043.7 \mathrm{cf}=0.047$ af
Overall Storage Efficiency $=52.7 \%$
Overall System Size $=96.00^{\prime} \times 8.50^{\prime} \times 4.75^{\prime}$
23 Chambers @ \$ 0.00 /ea = \$ 0.00
143.6 cy Field Excavation @ \$ 10.00 /cy = \$ 1,435.56
90.5 cy Stone @ \$ 30.00 /cy = \$ 2,713.75

Total Cost $=\$ 4,149.31$

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Summary for Pond 9P: ADS N12 Infiltration Trench System \#4

Inflow Area =	19	.00\% Impervious,	Inflow Depth > 4.71" for 10-Year event
Inflow	2.17 cfs @	12.08 hrs , Volume=	7,682 cf
Outflow	2.01 cfs @	12.12 hrs , Volume=	7,658 cf, Atten= 7\%, Lag= 2.0 min
Discarded =	0.01 cfs @	2.38 hrs, Volume=	760 cf
Primary	2.00 cfs @	12.12 hrs , Volume=	6,898 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev=235.45' @ 12.12 hrs Surf.Area= 400 sf Storage= 234 cf
Plug-Flow detention time $=6.3 \mathrm{~min}$ calculated for 7,658 cf (100% of inflow)
Center-of-Mass det. time $=4.1 \mathrm{~min}$ (751.8-747.7)

Volume	Invert	Avail.Storage	Storage Description
\#1A	234.00'	608 cf	4.21'W x 95.00'L x 4.04'H Field A
			1,616 cf Overall - 97 cf Embedded $=1,519$ cf $\times 40.0 \%$ Voids
\#2A	235.17'	75 cf	ADS N-12 12" x 4 Inside \#1
			Inside= 12.2"W $\times 12.2 \mathrm{H}=>0.81 \mathrm{sf} \times 20.00 \mathrm{~L}=16.2 \mathrm{cf}$
			Outside $=14.5 \mathrm{~W} \mathrm{~W} \times 14.5 \mathrm{H} \mathrm{H}=>1.05 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=20.9 \mathrm{cf}$
			Row Length Adjustment= +13.00' $\times 0.81 \mathrm{sf} \times 1$ rows
		683 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	234.00'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	234.10'	10.0" Round Culvert
			$\mathrm{L}=155.0$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 234.10' $/ 232.00 ' \mathrm{~S}=0.0135 \mathrm{l} /{ }^{\prime} \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$ Corrugated PP, smooth interior, Flow Area= 0.55 sf

Discarded OutFlow Max=0.01 cfs @ 2.38 hrs HW=234.04' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=2.00 cfs @ 12.12 hrs HW=235.44' (Free Discharge)
—2=Culvert (Inlet Controls 2.00 cfs @ 3.66 fps)

Pond 9P: ADS N12 Infiltration Trench System \#4 - Chamber Wizard Field A

Chamber Model = ADS N-12 12" (ADS N-12® Pipe)
Inside $=12.2^{\prime \prime} \mathrm{W} \times 12.2^{\prime \prime} \mathrm{H}=>0.81 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=16.2 \mathrm{cf}$
Outside $=14.5^{\prime \prime} \mathrm{W} \times 14.5^{\prime \prime} \mathrm{H}=>1.05 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=20.9 \mathrm{cf}$
Row Length Adjustment $=+13.00$ x 0.81 sf $\times 1$ rows
4 Chambers/Row x 20.00' Long +13.00' Row Adjustment = 93.00' Row Length +12.0" End Stone x 2 = 95.00' Base Length

1 Rows x 14.5" Wide + 18.0" Side Stone x 2 = 4.21' Base Width
14.0" Base + 14.5" Chamber Height + 20.0" Cover = 4.04' Field Height

4 Chambers $\times 16.2$ cf +13.00' Row Adjustment $\times 0.81$ sf $\times 1$ Rows $=75.3$ cf Chamber Storage
4 Chambers $\times 20.9$ cf $+13.00^{\prime}$ Row Adjustment $\times 1.05 \mathrm{sf} \times 1$ Rows $=97.3 \mathrm{cf}$ Displacement
1,616.2 cf Field - 97.3 cf Chambers $=1,518.9$ cf Stone $\times 40.0 \%$ Voids $=607.6$ cf Stone Storage
Chamber Storage + Stone Storage $=682.9 \mathrm{cf}=0.016$ af
Overall Storage Efficiency $=42.3 \%$
Overall System Size $=95.00^{\prime} \times 4.21^{\prime} \times 4.04{ }^{\prime}$
4 Chambers @ \$ 0.00 /ea = \$ 0.00
59.9 cy Field Excavation @ \$ 10.00 /cy = \$ 598.61
56.3 cy Stone @ \$ 30.00 /cy = \$ 1,687.67

Total Cost $=\$ 2,286.28$

Pond 9P: ADS N12 Infiltration Trench System \#4

Pond 9P: ADS N12 Infiltration Trench System \#4

Pond 9P: ADS N12 Infiltration Trench System \#4

Summary for Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Inflow Area =	59	pervious	Inflow Depth > 4.55" for 10-Year event
Inflow	6.37 cfs @	12.09 hrs , Volume=	22,575 cf
Outflow	6.37 cfs @	12.09 hrs , Volume=	16,410 cf, Atten=0\%, Lag= 0.3 min
Discarded =	0.07 cfs @	9.52 hrs , Volume=	5,052 cf
Primary	6.30 cfs @	12.09 hrs , Volume=	11,358 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 233.04' @ 12.09 hrs Surf.Area= 3,107 sf Storage= 6,375 cf
Plug-Flow detention time $=136.9$ min calculated for $16,396 \mathrm{cf}(73 \%$ of inflow)
Center-of-Mass det. time= $51.6 \mathrm{~min}(799.9-748.3$)

Volume	Invert	Avail.Storage	Storage Description
\#1	230.25'	1,658 cf	$5.00^{\prime} \mathrm{W} \times 195.00$ 'L x 4.25'H Prismatoid 4,144 cf Overall $\times 40.0 \%$ Voids
\#2A	229.00'	2,056 cf	$13.00^{\prime} \mathrm{W} \times 164.00^{\prime} \mathrm{L} \times 4.75^{\prime} \mathrm{H}$ Field A 10,127 cf Overall $-4,987$ cf Embedded $=5,140$ cf $\times 40.0 \%$ Voids
\#3A	229.50'	3,710 cf	Concrete Galley $4 \times 4 \times 4.25 \times 80$ Inside \#2 Inside= 42.2"W x 45.0"H => $13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside=54.0"W x51.0"H => $15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$ 80 Chambers in 2 Rows
		7,424 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
\#1	Primary	233.00^{\prime}	190.0' long Sharp-Crested Rectangular Weir	2 End Contraction(s)
\#2	Discarded	229.00^{\prime}	1.020 in/hr Exfiltration over Surface area	

Discarded OutFlow Max=0.07 cfs @ 9.52 hrs HW=230.25' (Free Discharge)
$L_{2=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.07} \mathrm{cfs}$)
Primary OutFlow Max=5.38 cfs @ 12.09 hrs HW=233.04' (Free Discharge)
—1=Sharp-Crested Rectangular Weir (Weir Controls 5.38 cfs @ 0.67 fps)

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3 - Chamber Wizard Field A

Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
40 Chambers/Row x 4.00' Long = 160.00' Row Length +24.0 " End Stone $\times 2=164.00$ ' Base Length
2 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 13.00' Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

80 Chambers x 46.4 cf $=3,710.5$ cf Chamber Storage
80 Chambers x 62.3 cf $=4,986.5$ cf Displacement
10,127.0 cf Field $-4,986.5$ cf Chambers $=5,140.5$ cf Stone $\times 40.0 \%$ Voids $=2,056.2$ cf Stone Storage
Chamber Storage + Stone Storage $=5,766.7 \mathrm{cf}=0.132$ af
Overall Storage Efficiency $=56.9 \%$
Overall System Size $=164.00^{\prime} \times 13.00^{\prime} \times 4.75^{\prime}$
80 Chambers @ \$ 0.00 /ea = \$ 0.00
375.1 cy Field Excavation @ \$ $10.00 / c y=\$ 3,750.74$
190.4 cy Stone @ \$ 30.00 /cy = \$ 5,711.65

Total Cost $=\$ 9,462.39$

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Summary for Link 11L: To Southerly Wetland

Inflow Area		$41,553 \mathrm{sf}$,	52.79%	Impervious,
Inflow	$=$	1.42 cfs @	12.20 hrs , Volume $=$	$3,269 \mathrm{cf}$
Primary	$=$	1.42 cfs @	12.20 hrs , Volume $=$	$3,269 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Link 11L: To Southerly Wetland

Summary for Link 12L: To Westerly Wetland

Inflow Area = 72,455 sf, 80.13\% Impervious, Inflow Depth > 2.06" for 10-Year event Inflow = Primary = 6.58 cfs @ 12.10 hrs, Volume= $12,452 \mathrm{cf}$ 6.58 cfs @ 12.10 hrs , Volume=
$12,452 \mathrm{cf}$, Atten $=0 \%, \mathrm{Lag}=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs

Link 12L: To Westerly Wetland

Time span $=0.10-24.00 \mathrm{hrs}, \mathrm{dt}=0.02 \mathrm{hrs}, 1196$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1E: To Southerly Wetland Runoff Area=43,251 sf 38.57\% Impervious Runoff Depth >3.99 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff=4.61 cfs $14,364 \mathrm{cf}$

Subcatchment 1P: To Southerly Wetland	Runoff Area $=16,727$ sf 0.00% Impervious Runoff Depth >1.90 "
	$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=58$ Runoff $=0.80 \mathrm{cfs} 2,647 \mathrm{cf}$
Subcatchment 2E: To Westerly	Runoff Area=71,205 sf 29.43\% Impervious Runoff Depth >4.73 "
	Tc=6.0 min UI Adjusted CN=87 Runoff=8.79 cfs 28,087 cf
Subcatchment 2P: To Westerly Wetland	Runoff Area $=12,938$ sf 0.00% Impervious Runoff Depth >1.73 "
	$\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=56$ Runoff $=0.55 \mathrm{cfs} 1,867 \mathrm{cf}$

Subcatchment 3P: Pavement to Infiltration Runoff Area=39,943 sf 96.34\% Impervious Runoff Depth>5.99" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=5.59 cfs $19,929 \mathrm{cf}$

Subcatchment 4P: Roof to Infiltration Runoff Area=19,574 sf 100.00\% Impervious Runoff Depth >5.99 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=2.74 cfs $9,766 \mathrm{cf}$

Subcatchment 5P: Pavement to Infiltration Runoff Area=15,930 sf 84.93% Impervious Runoff Depth>5.41" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=93$ Runoff= $2.15 \mathrm{cfs} 7,176 \mathrm{cf}$

Subcatchment 6P: Pavement to Infiltration Runoff Area=8,896 sf 94.49% Impervious Runoff Depth >5.87 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff=1.24 cfs $4,351 \mathrm{cf}$

Pond 7P: Crushed Stone Trench WQ and Peak Elev=239.04' Storage=2,363 cf Inflow=2.15 cfs 7,176 cf Discarded $=0.03 \mathrm{cfs} 1,655 \mathrm{cf}$ Primary $=3.35 \mathrm{cfs} 3,196 \mathrm{cf}$ Outflow=3.38 cfs $4,852 \mathrm{cf}$

Pond 8P: Crushed Stone Trench WQ and Peak Elev=233.01' Storage=2,262 cf Inflow=1.24 cfs $4,351 \mathrm{cf}$ Discarded $=0.03 \mathrm{cfs} 1,784 \mathrm{cf}$ Primary=$=0.30 \mathrm{cfs} 605 \mathrm{cf}$ Outflow=$=0.33 \mathrm{cfs} 2,389 \mathrm{cf}$

Pond 9P: ADS N12 Infiltration Trench System Peak Elev=235.89' Storage=327 cf Inflow=2.74 cfs 9,766 cf Discarded=0.01 cfs 774 cf Primary= 2.43 cfs 8,966 cf Outflow=2.44 cfs $9,739 \mathrm{cf}$

Pond 10P: Crushed Stone Trench WQ and Peak Elev=233.05' Storage=6,389 cf Inflow=7.89 cfs 28,895 cf Discarded=0.07 cfs 5,261 cf Primary=7.82 cfs 17,348 cf Outflow=7.89 cfs 22,609 cf

Link 11L: To Southerly Wetland Inflow=4.13 cfs $6,448 \mathrm{cf}$ Primary $=4.13$ cfs $6,448 \mathrm{cf}$

Link 12L: To Westerly Wetland
Inflow=8.37 cfs 19,215 cf Primary $=8.37$ cfs 19,215 cf

> Total Runoff Area $=228,464$ sf Runoff Volume $=88,186$ cf Average Runoff Depth $=4.63$ " 48.51% Pervious $=110,837 \mathrm{sf} \quad 51.49 \%$ Impervious $=117,627 \mathrm{sf}$

Summary for Subcatchment 1E: To Southerly Wetland

Runoff $=\quad 4.61$ cfs @ 12.09 hrs, Volume= 14,364 cf, Depth> 3.99"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25 -Year Rainfall=6.23"

Summary for Subcatchment 1P: To Southerly Wetland

Runoff $=\quad 0.80$ cfs @ 12.10 hrs, Volume $=\quad 2,647 \mathrm{cf}$, Depth> 1.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25 -Year Rainfall=6.23"

Summary for Subcatchment 2E: To Westerly Wetland/Property Line

Runoff $=\quad 8.79$ cfs @ 12.09 hrs, Volume= $\quad 28,087$ cf, Depth> 4.73"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25 -Year Rainfall=6.23"

Summary for Subcatchment 2P: To Westerly Wetland

Runoff $=\quad 0.55$ cfs @ 12.10 hrs, Volume= 1,867 cf, Depth> 1.73"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25 -Year Rainfall=6.23"

	Area (sf)	CN D	Description		
	$\begin{array}{r} \hline 2,281 \\ 10,657 \\ \hline \end{array}$	$\begin{array}{ll} 61 \\ 55 & V \\ \end{array}$	>75\% Grass cover, Good, HSG B Woods, Good, HSG B		
	$\begin{aligned} & 12,938 \\ & 12,938 \end{aligned}$	56	$\begin{aligned} & \text { Weighted Av } \\ & 100.00 \% \text { Per } \end{aligned}$	verage ervious Are	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \\ \hline \end{array}$	Description

Subcatchment 2P: To Westerly Wetland

Summary for Subcatchment 3P: Pavement to Infiltration System

Runoff $=\quad 5.59$ cfs @ 12.08 hrs, Volume= 19,929 cf, Depth> 5.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25 -Year Rainfall=6.23"

	Area (sf)	CN D	Description		
*	$\begin{array}{r} \hline 38,482 \\ 1,461 \\ \hline \end{array}$	$\begin{array}{ll} 98 & P \\ 85 & C \\ \hline \end{array}$	Paved parking, HSG B CrushedStone, HSG B		
	$\begin{array}{r} \hline 39,943 \\ 1,461 \\ 38,482 \end{array}$	$98 \quad \begin{array}{r}\text { V } \\ \\ \\ \\ 9\end{array}$	Weighted Average 3.66\% Pervious Area 96.34\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} \text { Length } \\ \text { (feet) } \end{array}$	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry,

Subcatchment 3P: Pavement to Infiltration System

Summary for Subcatchment 4P: Roof to Infiltration System

Runoff $=\quad 2.74$ cfs @ 12.08 hrs, Volume $=\quad 9,766$ cf, Depth> 5.99"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25 -Year Rainfall=6.23"

	ea (sf)	CN Description			
19,574		98 Roofs, HSG B			
19,574		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity \qquad	Description
6.0					Direct Entry

Subcatchment 4P: Roof to Infiltration System

Summary for Subcatchment 5P: Pavement to Infiltration System

Runoff $=\quad 2.15$ cfs @ 12.08 hrs, Volume $=\quad 7,176$ cf, Depth> 5.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25 -Year Rainfall=6.23"

	Area (sf)	CN D	Paved parking, HSG B		
	13,529	$\begin{array}{ll} 98 & F \\ 61 \end{array}$			
	1,973		>75\% Grass cover, Good, HSG B		
*	428	85	Crushed Stone, HSG B		
	15,930	93	Weighted Average		
	2,401		15.07\% Pervious Area		
	13,529		84.93\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} c \\ \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 5P: Pavement to Infiltration System

Summary for Subcatchment 6P: Pavement to Infiltration System

Runoff $=\quad 1.24$ cfs @ 12.08 hrs, Volume= 4,351 cf, Depth> 5.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 25 -Year Rainfall=6.23"

	Area (sf)	CN D	Description		
	$\begin{array}{r} 8,406 \\ 490 \end{array}$	$\begin{array}{ll} 98 & P \\ 85 & C \end{array}$	Paved parking, HSG B Crushed Stone, HSG B		
	$\begin{array}{r} \hline 8,896 \\ 490 \\ 8,406 \end{array}$	$97 \quad \begin{array}{r} \\ 5 \\ \\ \\ 9\end{array}$	Weighted Average 5.51\% Pervious Area 94.49\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity $(\mathrm{ft} / \mathrm{sec})$	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry,

Subcatchment 6P: Pavement to Infiltration System

Summary for Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Inflow Area =	15,930	pervious,	Inflow Depth > 5.41" for 25-Year event
Inflow	2.15 cfs @	12.08 hrs , Volume=	7,176 cf
Outflow	3.38 cfs @	12.08 hrs , Volume=	$4,852 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Discarded =	0.03 cfs @	10.96 hrs, Volume=	1,655 cf
Primary	3.35 cfs @	12.08 hrs , Volume=	3,196 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 239.04' @ 12.08 hrs Surf.Area= 1,115 sf Storage= 2,363 cf
Plug-Flow detention time $=150.8 \mathrm{~min}$ calculated for $4,848 \mathrm{cf}$ (68% of inflow)
Center-of-Mass det. time $=56.3 \mathrm{~min}$ (827.7-771.4)

Volume	Invert	Avail.Storage	Storage Description
\#1	$236.00{ }^{\prime}$	532 cf	$3.50^{\prime} \mathrm{W} \times 95.00^{\prime} \mathrm{L} \times 4.00^{\prime} \mathrm{H}$ Prismatoid 1,330 cf Overall $\times 40.0 \%$ Voids
\#2A	234.25'	937 cf	8.50'W x 92.00'L x 4.75'H Field A 3,715 cf Overall $-1,371$ cf Embedded $=2,343$ cf $\times 40.0 \%$ Voids
\#3A	234.75'	1,020 cf	Concrete Galley $4 \times 4 \times 4.25 \times 22$ Inside \#2 Inside= 42.2"W x 45.0"H => $13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0 \mathrm{H} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
2,490 cf Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Outl	t Devices
\#1	Primary	239.00' 95.0	Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)
\#2	Discarded	$234.25{ }^{\prime} 1.02$	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 10.96 hrs HW=236.00' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=2.87 cfs @ 12.08 hrs HW=239.04' (Free Discharge)
$廿_{1=S h a r p-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~}^{2.87} \mathrm{cfs} @ 0.69 \mathrm{fps}$)

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1 - Chamber Wizard Field A
Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
22 Chambers/Row x 4.00' Long = 88.00' Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=92.00^{\prime}$ Base Length
1 Rows x $54.0^{\prime \prime}$ Wide $+24.0^{\prime \prime}$ Side Stone x $2=8.50^{\prime}$ Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

22 Chambers $\times 46.4$ cf $=1,020.4$ cf Chamber Storage
22 Chambers x 62.3 cf $=1,371.3$ cf Displacement
3,714.5 cf Field $-1,371.3$ cf Chambers $=2,343.2$ cf Stone $\times 40.0 \%$ Voids $=937.3$ cf Stone Storage
Chamber Storage + Stone Storage $=1,957.7 \mathrm{cf}=0.045$ af
Overall Storage Efficiency $=52.7 \%$
Overall System Size $=92.00^{\prime} \times 8.50^{\prime} \times 4.75^{\prime}$
22 Chambers @ \$ 0.00 /ea = \$ 0.00
137.6 cy Field Excavation @ \$ 10.00 /cy = \$ 1,375.74
86.8 cy Stone @ \$ 30.00 /cy = \$ 2,603.57

Total Cost $=\$ 3,979.31$

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1
Stage-Discharge

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Summary for Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev=233.01' @ 12.46 hrs Surf.Area= 1,208 sf Storage= 2,262 cf
Plug-Flow detention time $=238.3 \mathrm{~min}$ calculated for $2,389 \mathrm{cf}$ (55% of inflow)
Center-of-Mass det. time $=120.5 \mathrm{~min}(871.5-750.9)$

Volume	Invert	Avail.Storage	Storage Description
\#1	231.00'	549 cf	4.00'W x 98.00'L x 3.50'H Prismatoid 1,372 cf Overall $\times 40.0 \%$ Voids
\#2A	228.75'	977 cf	8.50'W x 96.00'L x 4.75'H Field A 3,876 cf Overall $-1,434$ cf Embedded $=2,442$ cf $\times 40.0 \%$ Voids
\#3A	229.25'	1,067 cf	Concrete Galley $4 \times 4 \times 4.25 \times 23$ Inside \#2 Inside= $42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside= $54.0^{\prime \prime} \mathrm{W} \times 51.0 \mathrm{H} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
$2,593 \mathrm{cf}$ Total Available Storage			
Storage Group A created with Chamber Wizard			
Device	Routing	Invert Out	et Devices
\#1	Primary	233.00' 98.0	' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
\#2	Discarded	228.75' 1.02	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 11.94 hrs HW=231.04' (Free Discharge)
②=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=0.18 cfs @ 12.47 hrs HW=233.01' (Free Discharge)
L- $_{1=S h a r p-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~}^{0.18}$ cfs @ 0.27 fps)

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2 - Chamber Wizard Field A
Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
23 Chambers/Row x 4.00' Long = 92.00' Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=96.00^{\prime}$ Base Length
1 Rows x 54.0" Wide + 24.0" Side Stone x $2=8.50^{\prime}$ Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

23 Chambers $x 46.4$ cf $=1,066.8$ cf Chamber Storage
23 Chambers x $62.3 \mathrm{cf}=1,433.6$ cf Displacement
3,876.0 cf Field - 1,433.6 cf Chambers $=2,442.4$ cf Stone $\times 40.0 \%$ Voids $=977.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,043.7 \mathrm{cf}=0.047$ af
Overall Storage Efficiency $=52.7 \%$
Overall System Size $=96.00^{\prime} \times 8.50^{\prime} \times 4.75^{\prime}$
23 Chambers @ \$ 0.00 /ea = \$ 0.00
143.6 cy Field Excavation @ \$ 10.00 /cy = \$ 1,435.56
90.5 cy Stone @ \$ 30.00 /cy = \$ 2,713.75

Total Cost $=\$ 4,149.31$

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Summary for Pond 9P: ADS N12 Infiltration Trench System \#4

Inflow Area =	19	00\% Impervious,	Inflow Depth > 5.99" for 25-Year event
Inflow	2.74 cfs @	12.08 hrs, Volume=	9,766 cf
Outflow	2.44 cfs @	12.12 hrs , Volume=	9,739 cf, Atten= 11\%, Lag= 2.5 min
Discarded =	0.01 cfs @	1.70 hrs, Volume=	774 cf
Primary	2.43 cfs @	12.12 hrs , Volume=	8,966 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 235.89' @ 12.12 hrs Surf.Area= 400 sf Storage= 327 cf
Plug-Flow detention time $=5.6 \mathrm{~min}$ calculated for 9,731 cf (100% of inflow)
Center-of-Mass det. time $=3.8 \mathrm{~min}$ (747.8-744.1)

Volume	Invert	Avail.Storage	Storage Description
\#1A	234.00'	608 cf	4.21'W x 95.00'L x 4.04'H Field A
			1,616 cf Overall - 97 cf Embedded $=1,519$ cf $\times 40.0 \%$ Voids
\#2A	235.17'	75 cf	ADS N-12 12" x 4 Inside \#1
			Inside= 12.2"W x 12.2"H => $0.81 \mathrm{sf} \times 20.00 \mathrm{~L}=16.2$
			Outside= 14.5"W $\times 14.5$ " $\mathrm{H}=>1.05 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=20.9 \mathrm{cf}$
			Row Length Adjustment $=+13.00{ }^{\prime} \times 0.81 \mathrm{sf} \times 1$ rows
		683 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	234.00'	1.020 in/hr Exfiltration over Surface area
\#2	Primary	234.10'	10.0" Round Culvert
			$\mathrm{L}=155.0$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 234.10' / 232.00' S=0.0135 '/' Cc= 0.900
			$\mathrm{n}=0.012$ Corrugated PP, smooth interior, Flow Area= 0.55 sf

Discarded OutFlow Max=0.01 cfs @ 1.70 hrs HW=234.04' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=2.43 cfs @ 12.12 hrs HW=235.89' (Free Discharge)
—2=Culvert (Inlet Controls 2.43 cfs @ 4.45 fps)

Pond 9P: ADS N12 Infiltration Trench System \#4 - Chamber Wizard Field A

Chamber Model = ADS N-12 12" (ADS N-12® Pipe)
Inside= 12.2"W x 12.2"H => $0.81 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=16.2 \mathrm{cf}$
Outside $=14.5^{\prime \prime} \mathrm{W} \times 14.5^{\prime \prime} \mathrm{H}=>1.05 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=20.9 \mathrm{cf}$
Row Length Adjustment $=+13.00$ x 0.81 sf $\times 1$ rows
4 Chambers/Row x 20.00' Long +13.00' Row Adjustment = 93.00' Row Length +12.0" End Stone x 2 = 95.00' Base Length

1 Rows x 14.5" Wide + 18.0" Side Stone x 2 = 4.21' Base Width
14.0" Base + 14.5" Chamber Height + 20.0" Cover = 4.04' Field Height

4 Chambers $\times 16.2$ cf +13.00' Row Adjustment $\times 0.81$ sf $\times 1$ Rows $=75.3$ cf Chamber Storage
4 Chambers $\times 20.9$ cf $+13.00^{\prime}$ Row Adjustment $\times 1.05 \mathrm{sf} \times 1$ Rows $=97.3 \mathrm{cf}$ Displacement
1,616.2 cf Field - 97.3 cf Chambers $=1,518.9$ cf Stone $\times 40.0 \%$ Voids $=607.6$ cf Stone Storage
Chamber Storage + Stone Storage $=682.9 \mathrm{cf}=0.016$ af
Overall Storage Efficiency $=42.3 \%$
Overall System Size $=95.00^{\prime} \times 4.21^{\prime} \times 4.04{ }^{\prime}$
4 Chambers @ \$ 0.00 /ea = \$ 0.00
59.9 cy Field Excavation @ \$ 10.00 /cy = \$ 598.61
56.3 cy Stone @ \$ 30.00 /cy = \$ 1,687.67

Total Cost $=\$ 2,286.28$

Pond 9P: ADS N12 Infiltration Trench System \#4

Pond 9P: ADS N12 Infiltration Trench System \#4

Pond 9P: ADS N12 Infiltration Trench System \#4

Summary for Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Inflow Area =	59,517	\% Impervious,	Inflow Depth > 5.83" for $25-Y$ Year event
Inflow	7.89 cfs @	12.09 hrs, Volume=	28,895 cf
Outflow	7.89 cfs @	12.09 hrs, Volume=	22,609 cf, Atten=0\%, Lag= 0.2 min
Discarded =	0.07 cfs @	8.56 hrs, Volume=	5,261 cf
Primary	7.82 cfs @	12.09 hrs , Volume=	17,348 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 233.05' @ 12.09 hrs Surf.Area= 3,107 sf Storage= 6,389 cf
Plug-Flow detention time $=123.7$ min calculated for $22,609 \mathrm{cf}$ (78% of inflow)
Center-of-Mass det. time= 46.1 min (791.0-745.0)

Volume Invert		Avail.Storage	Storage Description	
\#1	$230.25{ }^{\prime}$	1,658 cf	$5.00^{\prime} \mathrm{W} \times 195.00^{\prime} \mathrm{L} \times 4.25$ 'H Prismatoid	
			4,144 cf Overall $\times 40.0 \%$ Voids	
\#2A	229.00'	2,056 cf	13.00 'W x 164.00'L x 4.75'H Field A	
			10,127 cf Overall - 4,987 cf Embedded $=5,140$ cf $\times 40.0 \%$ Voids	
\#3A	229.50'	$3,710 \mathrm{cf}$	Concrete Galley $4 \times 4 \times 4.25 \times 80$ Inside \#2	
			Inside $=42.2 \mathrm{~W} \mathrm{~W} \times 45.0 \mathrm{H} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50{ }^{\prime} \mathrm{L}=46.4 \mathrm{cf}$	
			Outside= 54.0"W x 51.0"H => $15.58 \mathrm{sf} \times 4.00 \mathrm{~L}=62.3 \mathrm{cf}$	
			80 Chambers in 2 Rows	
7,424 cf Total Available Storage				
Storage Group A created with Chamber Wizard				
Device	Routing	Invert Outlet Devices		
\#1	Primary	233.00' 190	' Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)	
\#2	Discarded	$229.00{ }^{\prime} 1.02$	in/hr Exfiltration over Surface area	
Discarded OutFlow Max=0.07 cfs @ 8.56 hrs HW=230.26' (Free Discharge) $L_{2=E x f i l t r a t i o n ~(E x f i l t r a t i o n ~ C o n t r o l s ~}^{0.07} \mathrm{cfs}$)				
Primary OutFlow Max=6.99 cfs @ 12.09 hrs HW=233.05' (Free Discharge) L-1=Sharp-Crested Rectangular Weir (Weir Controls 6.99 cfs @ 0.73 fps)				

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3 - Chamber Wizard Field A

Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside= 42.2"W x 45.0"H => $13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
40 Chambers/Row x 4.00' Long $=160.00^{\prime}$ Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=164.00$ ' Base Length
2 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 13.00' Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

80 Chambers x 46.4 cf $=3,710.5$ cf Chamber Storage
80 Chambers x 62.3 cf $=4,986.5$ cf Displacement
10,127.0 cf Field $-4,986.5$ cf Chambers $=5,140.5$ cf Stone $\times 40.0 \%$ Voids $=2,056.2$ cf Stone Storage
Chamber Storage + Stone Storage $=5,766.7 \mathrm{cf}=0.132$ af
Overall Storage Efficiency $=56.9 \%$
Overall System Size $=164.00^{\prime} \times 13.00^{\prime} \times 4.75^{\prime}$
80 Chambers @ \$ 0.00 /ea = \$ 0.00
375.1 cy Field Excavation @ \$ 10.00 /cy = \$ 3,750.74
190.4 cy Stone @ \$ 30.00 /cy = \$ 5,711.65

Total Cost $=\$ 9,462.39$

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Summary for Link 11L: To Southerly Wetland

Inflow Area =
41,553 sf, 52.79\% Impervious, Inflow Depth > 1.86" for 25-Year event
Inflow =
Primary =
4.13 cfs @ 12.08 hrs , Volume=

6,448 cf
4.13 cfs @ 12.08 hrs, Volume=
$6,448 \mathrm{cf}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow = Inflow, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Link 11L: To Southerly Wetland

Summary for Link 12L: To Westerly Wetland

Inflow Area =
72,455 sf, 80.13\% Impervious, Inflow Depth > 3.18" for 25-Year event
Inflow =
Primary =
8.37 cfs @ 12.09 hrs , Volume=

19,215 cf
8.37 cfs @ 12.09 hrs , Volume $=19,215 \mathrm{cf}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs

Link 12L: To Westerly Wetland

Time span $=0.10-24.00 \mathrm{hrs}, \mathrm{dt}=0.02 \mathrm{hrs}, 1196$ points
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method
Subcatchment 1E: To Southerly Wetland Runoff Area=43,251 sf 38.57% Impervious Runoff Depth >6.43 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=80$ Runoff $=7.32 \mathrm{cfs} 23,174 \mathrm{cf}$

Subcatchment 1P: To Southerly Wetland	Runoff Area $=16,727$ sf 0.00% Impervious Runoff Depth >3.74 "
	Tc=6.0 min CN=58 Runoff=1.66 cfs 5,219 cf
Subcatchment 2E: To Westerly	Runoff Area=71,205 sf 29.43% Impervious Runoff Depth >7.28 "
	Tc=6.0 min UI Adjusted CN=87 Runoff=13.21 cfs $43,214 \mathrm{cf}$
Subcatchment 2P: To Westerly Wetland	Runoff Area $=12,938$ sf 0.00% Impervious Runoff Depth >3.50 "
	Tc=6.0 min CN=56 Runoff=1.19 cfs 3,777 cf

Subcatchment 3P: Pavement to Infiltration Runoff Area=39,943 sf 96.34\% Impervious Runoff Depth>8.61" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff $=7.97 \mathrm{cfs} 28,671 \mathrm{cf}$

Subcatchment 4P: Roof to Infiltration

 Runoff Area $=19,574$ sf 100.00% Impervious Runoff Depth >8.61 " $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=98$ Runoff=3.91 cfs $14,050 \mathrm{cf}$Subcatchment 5P: Pavement to Infiltration Runoff Area=15,930 sf 84.93\% Impervious Runoff Depth>8.01" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=93$ Runoff=3.11 cfs $10,634 \mathrm{cf}$

Subcatchment 6P: Pavement to Infiltration Runoff Area=8,896 sf 94.49% Impervious Runoff Depth>8.49" $\mathrm{Tc}=6.0 \mathrm{~min} \mathrm{CN}=97$ Runoff=1.77 cfs 6,296 cf

Pond 7P: Crushed Stone Trench WQ and Peak Elev=239.04' Storage=2,362 cf Inflow=3.11 cfs 10,634 cf Discarded $=0.03$ cfs 1,784 cf Primary $=3.21 \mathrm{cfs} 6,493 \mathrm{cf}$ Outflow=3.24 cfs $8,277 \mathrm{cf}$

Pond 8P: Crushed Stone Trench WQ and Peak Elev=233.04' Storage=2,272 cf Inflow=1.77 cfs 6,296 cf Discarded $=0.03 \mathrm{cfs} 1,901 \mathrm{cf}$ Primary= $2.70 \mathrm{cfs} 2,276 \mathrm{cf}$ Outflow=2.72 cfs $4,177 \mathrm{cf}$

Pond 9P: ADS N12 Infiltration Trench System Peak Elev=237.18' Storage=545 cf Inflow=3.91 cfs 14,050 cf Discarded=0.01 cfs 787 cf Primary=3.38 cfs 13,233 cf Outflow=3.39 cfs 14,020 cf

Pond 10P: Crushed Stone Trench WQ and Peak Elev=233.07' Storage=6,418 cf Inflow=11.10 cfs 41,903 cf Discarded=0.07 cfs 5,551 cf Primary=11.03 cfs 30,051 cf Outflow=11.11 cfs 35,602 cf

Link 11L: To Southerly Wetland

Link 12L: To Westerly Wetland

Inflow=7.25 cfs 13,988 cf Primary $=7.25$ cfs 13,988 cf

Inflow=12.23 cfs 33,828 cf Primary $=12.23$ cfs 33,828 cf

Summary for Subcatchment 1E: To Southerly Wetland

Runoff $=\quad 7.32$ cfs @ 12.09 hrs, Volume= 23,174 cf, Depth> 6.43"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.86"

Summary for Subcatchment 1P: To Southerly Wetland

Runoff $=\quad 1.66$ cfs @ 12.09 hrs, Volume $=\quad 5,219$ cf, Depth> 3.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.86"

Summary for Subcatchment 2E: To Westerly Wetland/Property Line

Runoff $=\quad 13.21$ cfs @ 12.08 hrs, Volume= $\quad 43,214$ cf, Depth> 7.28"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.86"

Summary for Subcatchment 2P: To Westerly Wetland

Runoff $=\quad 1.19$ cfs @ 12.09 hrs, Volume $=\quad 3,777$ cf, Depth> 3.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.86"

Subcatchment 2P: To Westerly Wetland

Summary for Subcatchment 3P: Pavement to Infiltration System

Runoff $=\quad 7.97$ cfs @ 12.08 hrs, Volume $=\quad 28,671 \mathrm{cf}$, Depth> 8.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.86"

	Area (sf)	CN D	Description		
*	$\begin{array}{r} \hline 38,482 \\ 1,461 \\ \hline \end{array}$	$\begin{array}{ll} 98 & p \\ 85 & C \\ \hline \end{array}$	Paved parking, HSG B CrushedStone, HSG B		
	$\begin{array}{r} \hline 39,943 \\ 1,461 \\ 38,482 \end{array}$	$98 \quad \begin{array}{r} \\ \\ \\ \\ \\ \\ \end{array}$	Weighted Average 3.66\% Pervious Area 96.34\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope Velocity Capacity (ft/ft) (ft/sec) (cfs)			Description
6.0					Direct Entry,

Subcatchment 3P: Pavement to Infiltration System

Summary for Subcatchment 4P: Roof to Infiltration System

Runoff $=\quad 3.91$ cfs @ 12.08 hrs, Volume $=14,050$ cf, Depth> 8.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.86"

	ea (sf)	CN Description			
	$19,574$	98	oofs, HSG		
$19,574$		100.00\% Impervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Subcatchment 4P: Roof to Infiltration System

Summary for Subcatchment 5P: Pavement to Infiltration System

Runoff =
3.11 cfs @ 12.08 hrs, Volume=

10,634 cf, Depth> 8.01"
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.86"

	Area (sf)	CN D	Paved parking, HSG B		
	13,529	$\begin{array}{ll} 98 & F \\ 61 \end{array}$			
	1,973		>75\% Grass cover, Good, HSG B		
*	428	85	Crushed Stone, HSG B		
	15,930	93	Weighted Average		
	2,401		15.07\% Pervious Area		
	13,529		84.93\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	$\begin{array}{r} c \\ \text { c } \begin{array}{r} \text { Length } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 5P: Pavement to Infiltration System

Summary for Subcatchment 6P: Pavement to Infiltration System

Runoff $=\quad 1.77$ cfs @ 12.08 hrs, Volume= $\quad 6,296$ cf, Depth> 8.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs Type III 24-hr 100-Year Rainfall=8.86"

	Area (sf)	CN D	Description		
	8,406	98 P	Paved parking, HSG B		
	490	85	Crushed Stone, HSG B		
	8,896	97 V	Weighted Average		
	490		5.51\% Pervious Area		
	8,406		94.49\% Impervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
6.0					Direct Entry

Subcatchment 6P: Pavement to Infiltration System

Summary for Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Inflow Area =	15,930	pervious,	Inflow Depth > 8.01" for 100-Year event
Inflow	3.11 cfs @	12.08 hrs , Volume=	10,634 cf
Outflow	3.24 cfs @	12.08 hrs , Volume=	$8,277 \mathrm{cf}$, Atten= 0\%, Lag= 0.0 min
Discarded =	0.03 cfs @	9.70 hrs , Volume=	1,784 cf
Primary	3.21 cfs @	12.08 hrs , Volume=	6,493 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 239.04' @ 12.08 hrs Surf.Area= 1,115 sf Storage= 2,362 cf
Plug-Flow detention time $=123.3 \mathrm{~min}$ calculated for $8,270 \mathrm{cf}$ (78% of inflow)
Center-of-Mass det. time= $43.9 \mathrm{~min}(806.2-762.3$)

Volume	Invert	Avail.Storage	Storage Description
\#1	236.00'	532 cf	3.50'W x 95.00'L x 4.00'H Prismatoid
			1,330 cf Overall $\times 40.0 \%$ Voids
\#2A	234.25'	937 cf	8.50'W x 92.00'L x 4.75'H Field A
			3,715 cf Overall - 1,371 cf Embedded $=2,343$ cf $\times 40.0 \%$ Voids
\#3A	234.75'	1,020 cf	Concrete Galley $4 \times 4 \times 4.25 \times 22$ Inside \#2
			Inside $=42.2$ "W $\times 45.0 \mathrm{OH}=>13.25 \mathrm{sf} \times 3.50 \mathrm{~L}=46.4 \mathrm{cf}$
			Outside= 54.0"W $\times 51.0 \mathrm{O} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00 \mathrm{~L}=62.3 \mathrm{cf}$

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
\#1	Primary	239.00	95.0' long Sharp-Crested Rectangular Weir	2 End Contraction(s)
\#2	Discarded	234.25^{\prime}	$\mathbf{1 . 0 2 0}$ in/hr Exfiltration over Surface area	

Primary OutFlow Max=2.78 cfs @ 12.08 hrs HW=239.04' (Free Discharge)
$廿_{1=S h a r p-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~}^{2.78} \mathrm{cfs} @ 0.68 \mathrm{fps}$)

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1 - Chamber Wizard Field A
Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
22 Chambers/Row x 4.00' Long = 88.00' Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=92.00^{\prime}$ Base Length
1 Rows x $54.0^{\prime \prime}$ Wide $+24.0^{\prime \prime}$ Side Stone x $2=8.50^{\prime}$ Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

22 Chambers $\times 46.4$ cf $=1,020.4$ cf Chamber Storage
22 Chambers x 62.3 cf $=1,371.3$ cf Displacement
3,714.5 cf Field - 1,371.3 cf Chambers $=2,343.2$ cf Stone $\times 40.0 \%$ Voids $=937.3$ cf Stone Storage
Chamber Storage + Stone Storage $=1,957.7 \mathrm{cf}=0.045$ af
Overall Storage Efficiency $=52.7 \%$
Overall System Size $=92.00^{\prime} \times 8.50^{\prime} \times 4.75^{\prime}$
22 Chambers @ \$ 0.00 /ea = \$ 0.00
137.6 cy Field Excavation @ \$ 10.00 /cy = \$ 1,375.74
86.8 cy Stone @ \$ 30.00 /cy = \$ 2,603.57

Total Cost $=\$ 3,979.31$

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1
Stage-Discharge

Pond 7P: Crushed Stone Trench WQ and Galleys System \#1

Summary for Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Inflow Area =	8,896 sf,	pervious,	Inflow Depth > 8.49" for 100-Year event
Inflow	1.77 cfs @	12.08 hrs , Volume=	6,296 cf
Outflow	2.72 cfs @	12.10 hrs , Volume=	$4,177 \mathrm{cf}$, Atten= 0\%, Lag= 1.0 min
Discarded	0.03 cfs @	11.48 hrs, Volume=	1,901 cf
Primary	2.70 cfs @	12.10 hrs , Volume=	2,276 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 233.04' @ 12.10 hrs Surf.Area= 1,208 sf Storage= 2,272 cf
Plug-Flow detention time= 169.1 min calculated for $4,174 \mathrm{cf}$ (66% of inflow)
Center-of-Mass det. time= $68.6 \mathrm{~min}(813.6-745.0)$

Volume	Invert	Avail.Storage	Storage Description
\#1	$231.00{ }^{\prime}$	549 cf	4.00'W x 98.00'L x 3.50'H Prismatoid 1,372 cf Overall $\times 40.0 \%$ Voids
\#2A	228.75'	977 cf	8.50'W $\times 96.00^{\prime} \mathrm{L} \times 4.75{ }^{\text {'H }}$ Field A
			3,876 cf Overall - 1,434 cf Embedded $=2,442$ cf x 40.0\% Voids
\#3A	229.25'	1,067 cf	Concrete Galley $4 \times 4 \times 4.25 \times 23$ Inside \#2 Inside= $42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0 \mathrm{H} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
		2,593 cf	Total Available Storage
Stora	ge Group A	ated with Cham	er Wizard
Device	Routing	Invert Outl	t Devices
\#1	Primary	233.00' 98.0	Iong Sharp-Crested Rectangular Weir 2 End Contraction(s)
\#2	Discarded	$228.75{ }^{\prime} 1.02$	in/hr Exfiltration over Surface area

Discarded OutFlow Max=0.03 cfs @ 11.48 hrs HW=231.02' (Free Discharge)
L2=Exfiltration (Exfiltration Controls 0.03 cfs)
Primary OutFlow Max=2.05 cfs @ 12.10 hrs HW=233.03' (Free Discharge)
L- $_{1=S h a r p-C r e s t e d ~ R e c t a n g u l a r ~ W e i r ~(W e i r ~ C o n t r o l s ~}^{2.05}$ cfs @ 0.61 fps)

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2 - Chamber Wizard Field A
Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0$ " $\mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
23 Chambers/Row x 4.00' Long = 92.00' Row Length $+24.0^{\prime \prime}$ End Stone $\times 2=96.00^{\prime}$ Base Length
1 Rows x 54.0" Wide + 24.0" Side Stone x $2=8.50^{\prime}$ Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

23 Chambers $\times 46.4$ cf $=1,066.8$ cf Chamber Storage
23 Chambers x $62.3 \mathrm{cf}=1,433.6$ cf Displacement
3,876.0 cf Field - 1,433.6 cf Chambers $=2,442.4$ cf Stone $\times 40.0 \%$ Voids $=977.0$ cf Stone Storage
Chamber Storage + Stone Storage $=2,043.7 \mathrm{cf}=0.047$ af
Overall Storage Efficiency $=52.7 \%$
Overall System Size $=96.00^{\prime} \times 8.50^{\prime} \times 4.75^{\prime}$
23 Chambers @ \$ 0.00 /ea = \$ 0.00
143.6 cy Field Excavation @ \$ 10.00 /cy = \$ 1,435.56
90.5 cy Stone @ \$ 30.00 /cy = \$ 2,713.75

Total Cost $=\$ 4,149.31$

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Pond 8P: Crushed Stone Trench WQ and Galleys System \#2

Summary for Pond 9P: ADS N12 Infiltration Trench System \#4

Inflow Area =	19	\% Impervious,	Inflow Depth > 8.61" for 100-Year event
Inflow	3.91 cfs @	12.08 hrs, Volume=	14,050 cf
Outflow	3.39 cfs @	12.13 hrs , Volume=	$14,020 \mathrm{cf}$, Atten= 13\%, Lag= 2.7 min
Discarded =	0.01 cfs @	1.08 hrs, Volume=	787 cf
Primary	3.38 cfs @	12.13 hrs , Volume=	13,233 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev=237.18' @ 12.13 hrs Surf.Area= 400 sf Storage= 545 cf
Plug-Flow detention time $=4.8 \mathrm{~min}$ calculated for $14,008 \mathrm{cf}$ (100% of inflow)
Center-of-Mass det. time $=3.3$ min (742.8-739.5)

Volume	Invert	Avail.Storage	Storage Description
\#1A	234.00'	608 cf	4.21'W x 95.00'L x 4.04'H Field A
			1,616 cf Overall - 97 cf Embedded $=1,519$ cf $\times 40.0 \%$ Voids
\#2A	235.17'	75 cf	ADS N-12 12" x 4 Inside \#1
			Inside= 12.2"W x 12.2"H => $0.81 \mathrm{sf} \times 20.00 \mathrm{~L}=16.2$
			Outside= 14.5"W $\times 14.5$ " $\mathrm{H}=>1.05 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=20.9 \mathrm{cf}$
			Row Length Adjustment $=+13.00{ }^{\prime} \times 0.81 \mathrm{sf} \times 1$ rows
		683 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
\#1	Discarded	234.00'	$1.020 \mathrm{in} / \mathrm{hr}$ Exfiltration over Surface area
\#2	Primary	234.10'	10.0" Round Culvert
			$\mathrm{L}=155.0$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 234.10' $/ 232.00 ' \mathrm{~S}=0.0135 \mathrm{l} / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$ Corrugated PP, smooth interior, Flow Area= 0.55 sf

Discarded OutFlow Max=0.01 cfs @ 1.08 hrs HW=234.04' (Free Discharge)
—1=Exfiltration (Exfiltration Controls 0.01 cfs)
Primary OutFlow Max=3.37 cfs @ 12.13 hrs HW=237.16' (Free Discharge)
—2=Culvert (Inlet Controls 3.37 cfs @ 6.18 fps)

Pond 9P: ADS N12 Infiltration Trench System \#4 - Chamber Wizard Field A

Chamber Model = ADS N-12 12" (ADS N-12® Pipe)
Inside $=12.2^{\prime \prime} \mathrm{W} \times 12.2^{\prime \prime} \mathrm{H}=>0.81 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=16.2 \mathrm{cf}$
Outside $=14.5^{\prime \prime} \mathrm{W} \times 14.5^{\prime \prime} \mathrm{H}=>1.05 \mathrm{sf} \times 20.00^{\prime} \mathrm{L}=20.9 \mathrm{cf}$
Row Length Adjustment= +13.00' x 0.81 sf $\times 1$ rows
4 Chambers/Row x 20.00' Long +13.00' Row Adjustment = 93.00' Row Length $+12.0^{\prime \prime}$ End Stone $\times 2$ = 95.00' Base Length

1 Rows x 14.5" Wide + 18.0" Side Stone x 2 = 4.21' Base Width
14.0" Base + 14.5" Chamber Height + 20.0" Cover = 4.04' Field Height

4 Chambers $\times 16.2$ cf +13.00' Row Adjustment $\times 0.81$ sf $\times 1$ Rows $=75.3$ cf Chamber Storage
4 Chambers $\times 20.9$ cf $+13.00^{\prime}$ Row Adjustment $\times 1.05 \mathrm{sf} \times 1$ Rows $=97.3 \mathrm{cf}$ Displacement
1,616.2 cf Field -97.3 cf Chambers $=1,518.9$ cf Stone $\times 40.0 \%$ Voids $=607.6$ cf Stone Storage
Chamber Storage + Stone Storage $=682.9 \mathrm{cf}=0.016$ af
Overall Storage Efficiency $=42.3 \%$
Overall System Size $=95.00^{\prime} \times 4.21^{\prime} \times 4.04{ }^{\prime}$
4 Chambers @ \$ 0.00 /ea = \$ 0.00
59.9 cy Field Excavation @ \$ 10.00 /cy = \$ 598.61
56.3 cy Stone @ \$ 30.00 /cy = \$ 1,687.67

Total Cost $=\$ 2,286.28$

Pond 9P: ADS N12 Infiltration Trench System \#4

Pond 9P: ADS N12 Infiltration Trench System \#4

Pond 9P: ADS N12 Infiltration Trench System \#4

Summary for Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Inflow Area =	59,517 sf,	97.55\% Impervious,	Inflow Depth > 8.45" for 100-Year event
Inflow	11.10 cfs @	12.09 hrs , Volume=	41,903 cf
Outflow	11.11 cfs @	12.10 hrs , Volume=	35,602 cf, Atten=0\%, Lag= 0.2 min
Discarded	0.07 cfs @	6.76 hrs , Volume=	5,551 cf
Primary	11.03 cfs @	12.10 hrs , Volume=	30,051 cf

Routing by Stor-Ind method, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Peak Elev= 233.07' @ 12.10 hrs Surf.Area= 3,107 sf Storage= 6,418 cf
Plug-Flow detention time $=107.5 \mathrm{~min}$ calculated for $35,573 \mathrm{cf}$ (85% of inflow)
Center-of-Mass det. time= 43.9 min (784.4-740.5)

Volume	Invert	Avail.Storage	Storage Description
\#1	230.25'	1,658 cf	$5.00^{\prime} \mathrm{W} \times 195.00 \mathrm{~L} \times 4.25$ 'H Prismatoid 4,144 cf Overall $\times 40.0 \%$ Voids
\#2A	229.00'	2,056 cf	$13.00^{\prime} \mathrm{W}$ x 164.00 'L x 4.75 'H Field A 10,127 cf Overall $-4,987$ cf Embedded $=5,140$ cf $x 40.0 \%$ Voids
\#3A	229.50'	3,710 cf	Concrete Galley $4 \times 4 \times 4.25 \times 80$ Inside \#2 Inside= $42.2^{\prime \prime} \mathrm{W} \times 45.0^{\prime \prime} \mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$ Outside= $54.0^{\prime \prime} \mathrm{W} \times 51.0 \mathrm{H} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$ 80 Chambers in 2 Rows

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
\#1	Primary	233.00^{\prime}	190.0' long Sharp-Crested Rectangular Weir	2 End Contraction(s)
\#2	Discarded	229.00^{\prime}	1.020 in/hr Exfiltration over Surface area	

Discarded OutFlow Max=0.07 cfs @ 6.76 hrs HW=230.25' (Free Discharge)
${ }^{2} \mathbf{2}=$ Exfiltration (Exfiltration Controls 0.07 cfs)
Primary OutFlow Max=10.83 cfs @ 12.10 hrs HW=233.07' (Free Discharge)
—1=Sharp-Crested Rectangular Weir (Weir Controls 10.83 cfs @ 0.85 fps)

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3 - Chamber Wizard Field A

Chamber Model $=$ Concrete Galley $4 \times 4 \times 4.25$ (Concrete Galley, Shea LE-EGH, LE-CGH or equivalent) Inside $=42.2^{\prime \prime} \mathrm{W} \times 45.0$ " $\mathrm{H}=>13.25 \mathrm{sf} \times 3.50^{\prime} \mathrm{L}=46.4 \mathrm{cf}$
Outside $=54.0^{\prime \prime} \mathrm{W} \times 51.0^{\prime \prime} \mathrm{H}=>15.58 \mathrm{sf} \times 4.00^{\prime} \mathrm{L}=62.3 \mathrm{cf}$
40 Chambers/Row x 4.00' Long = 160.00' Row Length +24.0 " End Stone $\times 2=164.00$ ' Base Length
2 Rows x 54.0" Wide + 24.0" Side Stone x 2 = 13.00' Base Width
6.0" Base $+51.0^{\prime \prime}$ Chamber Height $=4.75$ ' Field Height

80 Chambers x 46.4 cf $=3,710.5$ cf Chamber Storage
80 Chambers x 62.3 cf $=4,986.5$ cf Displacement
10,127.0 cf Field $-4,986.5$ cf Chambers $=5,140.5$ cf Stone $\times 40.0 \%$ Voids $=2,056.2$ cf Stone Storage
Chamber Storage + Stone Storage $=5,766.7 \mathrm{cf}=0.132$ af
Overall Storage Efficiency $=56.9 \%$
Overall System Size $=164.00^{\prime} \times 13.00^{\prime} \times 4.75^{\prime}$
80 Chambers @ \$ 0.00 /ea = \$ 0.00
375.1 cy Field Excavation @ \$ 10.00 /cy = \$ 3,750.74
190.4 cy Stone @ \$ 30.00 /cy = \$ 5,711.65

Total Cost $=\$ 9,462.39$

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Pond 10P: Crushed Stone Trench WQ and Galleys System \#3

Summary for Link 11L: To Southerly Wetland

Inflow Area =
Inflow =
Primary =

41,553 sf, 52.79% Impervious, Inflow Depth > 4.04" for 100-Year event 7.25 cfs @ 12.10 hrs , Volume=
7.25 cfs @ 12.10 hrs , Volume= $13,988 \mathrm{cf}$ $13,988 \mathrm{cf}$, Atten $=0 \%, L a g=0.0 \mathrm{~min}$

Primary outflow = Inflow, Time Span= 0.10-24.00 hrs, dt= 0.02 hrs
Link 11L: To Southerly Wetland

Summary for Link 12L: To Westerly Wetland

Inflow Area = Inflow = Primary =

72,455 sf, 80.13% Impervious, Inflow Depth > 5.60" for 100-Year event

$$
0
$$

Primary outflow $=$ Inflow, Time Span= $0.10-24.00 \mathrm{hrs}, \mathrm{dt}=0.02 \mathrm{hrs}$

Link 12L: To Westerly Wetland

Section III

OPERATION AND MAINTENANCE PLAN

OPERATION AND MAINTENANCE PLAN DURING CONSTRUCTION
 108 Bodwell Street
 Avon, MA 02359

Owner: CJ Shaughnessy Realty LLC
520 Bodwell Street Ext.
Avon, MA 02322
Contact: Chris Shaughnessy (781-315-5321)
Party Responsible for Operation and Maintenance:
CJ Shaughnessy Realty LLC
520 Bodwell Street Ext.
Avon, MA 02322
Contact: Chris Shaughnessy (781-315-5321)

Source of Funding:

Operation and Maintenance of this stormwater management system will be the responsibility of the property owner to include its successor and/or assigns, as the same may appear on record with the appropriate register of deeds.

During Construction:

Construction activities shall follow the Construction Sequence shown on the approved plan.
During periods of active construction the stormwater management system shall be inspected on a weekly basis and within 24 hours of a storm event of greater than $1 / 2 "$. Maintenance tasks shall be performed monthly or after significant rainfall events of 1 " of rain or greater. During construction, silt-laden runoff shall be prevented from entering the drainage system and off-site properties. Temporary swales shall be constructed as needed during construction to direct runoff to sediment traps. Infiltration systems shall not be placed in service until after the installation of base course pavement and vegetative stabilization of the areas contributing to the systems.

If dewatering operations are necessary, all water pumped from the dewatering shall be directed to a "dirt bag" pumped sediment removal system (or approved equal) as manufactured by ACF Environmental. The unit shall be placed on a crushed stone blanket. Disposal of such "dirt bag" shall occur when the device is full and can no longer effectively filter sediment or allow water to pass at a reasonable flow rate. Disposal of this unit shall be the responsibility of the contractor and shall be as directed by the owner in accordance with applicable local, state, and federal guidelines and regulations.

Stabilized construction entrances shall be placed at the entrances and shall consist of $1 \frac{1}{2}$ " to 2 " stone and be constructed as shown on the approved plans.

All erosion and sedimentation control measures shall be in place prior to the commencement of any site work or earthwork operations, shall be maintained during construction, and shall remain in place until all site work is complete and ground cover is established.

Heavy equipment shall not be used on basin bottoms.
All exposed soils not to be paved shall be stabilized as soon as practical. Seed mixes shall only be applied during appropriate periods as recommended by the seed supplier, typically May 1 to October 15. Any exposed soils that can not be stabilized by vegetation during these dates shall be stabilized with hay bales, hay mulch, check dams, jute netting or other acceptable means.

Once each structure is in place, it should be maintained in accordance with the procedures described in the post-construction Operations and Maintenance Plan.

During dry periods where dust is created by construction activities the following control measures should be implemented.

- Sprinkling - The contractor may sprinkle the ground along haul roads and traffic areas until moist.
- Vegetative cover - Areas that are not expected to be disturbed regularly may be stabilized with vegetative cover.
- Mulch - Mulching can be used as a quick and effective means of dust control in recently disturbed areas.
- Spray on chemical soil treatments may be utilized. Application rates shall conform to manufacturers recommendations.

Inspections

The Owner shall be responsible to secure the services of a Professional Engineer to perform inspections as required. Inspections during periods of active construction shall be weekly and within 24 hours of a storm event of greater than $1 / 2$ ". The Professional Engineer shall perform inspections to insure that the approved plan is being followed with particular attention to the Planning Board Approval and the Construction Sequencing. The Engineer shall be responsible for inspecting the roadway construction and the construction of the stormwater management system. The Engineer shall prepare and submit to the Planning Board, the Inspection Schedule and Evaluation Checklist (see attached) and, if necessary, request the required maintenance and/or repair of the necessary items. This form shall be stamped by the Engineer and the Owner shall be notified that specific changes and/or repairs are necessary.

For additional information, refer to Performance, Standards and Guidelines for Stormwater Management in Massachusetts, published by the Department of Environmental Protection.

STORMWATER MANAGEMENT

BEST MANAGEMENT PRACTICES
INSPECTION SCHEDULE AND EVALUATION CHECKLIST - CONSTRUCTION PHASE
PROJECT LOCATION: 108 Bodwell Street - Avon, MA
O
Latest Revision:
9/13/23

Stormwater Control Manager: \qquad Stamp
$\left.\begin{array}{|l|l|l|l|l|l|l|l|l|}\hline \begin{array}{l}\text { Best } \\ \text { Management } \\ \text { Practice }\end{array} & \begin{array}{l}\text { Inspection } \\ \text { Frequency } \\ (1)\end{array} & \begin{array}{l}\text { Date } \\ \text { Inspec } \\ \text { ted }\end{array} & & \begin{array}{l}\text { Inspector }\end{array} & \begin{array}{l}\text { Minimum } \\ \text { Maintenance and } \\ \text { Key Items to } \\ \text { Check }\end{array} & \begin{array}{l}\text { Cleaning } \\ \text { Repair } \\ \text { Needed } \\ \text { yes/no } \\ \text { List } \\ \text { items }\end{array} & \begin{array}{l}\text { Date of } \\ \text { Cleaning/Repair }\end{array} & \begin{array}{l}\text { Performed } \\ \text { By }\end{array} \\ \text { in } \\ \text { Detention } \\ \text { System }\end{array}\right\}$
(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook for recommendations regarding frequency for inspection and maintenance of specific BMPs.

Limited or no use of sodium chloride salts, fertilizers or pesticides recommended. Slow release fertilizer recommended. Other notes:(Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan)

OPERATION AND MAINTENANCE PLAN
 PROPOSED DRAINAGE SYSTEM
 108 Bodwell Street
 Avon, MA 02359

Owner:

CJ Shaughnessy Realty LLC
520 Bodwell Street Ext.
Avon, MA 02322
Contact: Chris Shaughnessy (781-315-5321)
Party Responsible for Operation and Maintenance:
CJ Shaughnessy Realty LLC
520 Bodwell Street Ext.
Avon, MA 02322
Contact: Chris Shaughnessy (781-315-5321)

Source of Funding:

Operation and Maintenance of this stormwater management system will be the responsibility of the owners and funding for operation and maintenance of the stormwater management system will be the responsibility of the Department of Public Works.

Post Construction Inspection and Maintenance:

Crushed Stone Infiltration Systems

After construction, the infiltration systems shall be inspected for proper function and stabilization after every major storm event until the lot is completely developed and stabilized. Inspection and routine maintenance of the paved area such as vacuum and street sweeping is required to prevent sediment from entering the infiltration system. Inspection shall be done four times per year. If sediment begins to occur within the system perform corrective measures such as vacuum cleaning. Evaluate the system to determine the source of sediment in order to maintain infiltration capacity; as required by the Stormwater Management Policy.

Roof Drains

Gutters shall be inspected and cleaned twice per year of any debris. Roof drain downspouts shall be inspected four times per year for signs of backup and clogging. Roof drain cleanouts shall be inspected and cleaned yearly of any debris.

Lawn Fertilization

Lawn fertilizer shall be slow release and limited to 3 lbs per 1000 s.f. per year.

Definition of Major Storm Event

For the purposes of this operation and maintenance plan a major storm event should be defined as a rainfall of such intensity or duration that causes observable movement of sediment on the roadway or site. It is the intent of this plan to prevent this sediment from entering the drainage system. Prior to stabilization of the site this may occur more frequently with less intense storms. As the site is stabilized with ground cover the movement of sediment will only occur during more severe storms. For additional information, refer to Performance Standards and Guidelines for Stormwater Management in Massachusetts, published by the Department of Environmental Protection.

STORMWATER MANAGEMENT

BEST MANAGEMENT PRACTICES

INSPECTION SCHEDULE AND EVALUATION CHECKLIST - POST CONSTRUCTION PHASE

PROJECT LOCATION: 108 Bodwell Street-Avon, MA
Latest Revision:
9/14/23

Best Management Practice	Inspection Frequency (1)	Date Inspected	Inspector	Minimum Maintenance and Key Items to Check	Cleaning/ Repair Needed yes/no List items	Date of Cleaning/Repair	Performed By	Water Level in Detention System
Roof Drains	Four times per year							
Crushed Stone Infiltration System	Four times per year							

(1) Refer to the Massachusetts Stormwater Management, Volume Two: Stormwater Technical Handbook for recommendations regarding frequency for inspection and maintenance of specific BMPs.

Limited or no use of sodium chloride salts, fertilizers or pesticides recommended. Slow release fertilizer recommended.
Other notes:(Include deviations from: Con Com Order of Conditions, PB Approval, Construction Sequence and Approved Plan)

Stormwater Control Manager: \qquad

Office Review

Published Soil Survey Available: No X Yes \qquad
Year Published: \qquad Publication Scale: \qquad Soil Map Unit: \qquad
Drainage Class: \qquad Soil Limitations: \qquad
Surficial Geology Report Available: No X Yes \qquad
Year Published: \qquad Publication Scale: \qquad
Geologic Material (Map Unit): \qquad Landform: \qquad
Flood Insurance Rate Map:
Above 500 year flood boundary:
Within 500 year flood boundary Within 100 year flood boundary

Wetland Area:

National Wetland Inventory Map (map unit): \qquad Wetlands Conservancy Program Map (map unit): \qquad

Current Water Resource Conditions (USGS):

 Range: Above Normal \qquadMonth:
 Normal \qquad

Below Normal \qquad

Other References Reviewed:

Depth of Naturally Occurring Pervious Material

Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?

If not, what is the depth of naturally occurring pervious material?

Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CHR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise, and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated on the attached soil evaluation form, are accurate and in accordance with CMR 15.100 through 15.107.

Signature: \qquad

TITLE 5 ONSITE REVIEW

$$
\text { sep Hole \# } \frac{\backslash}{\text { scation(identify on Site Plan) }} \text { Date }
$$

\qquad 8129123
\qquad
and Use \qquad Slope(\%) \qquad 0-2 Surface Stones \qquad egetation (trave)_________ Landform \qquad
istances from: Open Water Body \qquad ft. Possible Wet Area \qquad 200 ft. Drinking Water Well \qquad ft.

Drainageway \qquad ft. Propertyline \qquad 40 ft Other \qquad

- DEEP OBSERVATION HOLE LOG
epth From Surface Inches)

Soil Horizon
Soil Texture :
Soil Color (USDA

Soil Mottling Other: Structures, Stones, Boulders, Consistency,\%Gravel
\qquad
60-144" \quad a. Lonwisand) $2.515 / 4$ none. $590-10 \%$ general Several (coble tor to
\qquad parent Material (geologic) \qquad Depth to Bedrock Jepth to Groundwater:

Standing Water in Hole: none Weeping from Pit Face none
Estimated Seasonal High Groundwater $12^{\prime}-0^{\prime \prime}$ assumed no nt en countered
DETERMINATION FOR SEASONAL HIGH WATER TABLE
Method Used:
_Depth observed standing in observation hole: \qquad inches \qquad Depth to soil mottles: \qquad inches -_Depth to weeping from side of observation hole: \qquad inches \qquad Groundwater adjustment \qquad Index Well \#. \qquad Reading Date \qquad Index well level \qquad Adj.factor \qquad Adj.Groundwater level \qquad

Site Suitability Assessment: Site Passed \qquad Site Failed \qquad Additional Testing Needed:
\qquad
Comments:
\qquad Date \qquad人) 11.10 Weather \qquad cloudy 75° scation(identify on Site Plan) \qquad Slope(\%) $0-2$ Surface Stones \qquad
 \qquad
istances from: Open Water Body \qquad ft. Possible Wet Area \qquad 200 ft. Drinking Water Well \qquad ft. Drainageway \qquad ft. Propertyline \qquad 40 ft Other \qquad

- DEEP OBSERVATION HOLE LOG
eth From Surface Inches)

Soil Horizon (USDA

Soil Texture : (Munsell)

Soil Color

0"-721
72-132" C_{1}. Loumpornd 2 st s/2 nu re fro Brutes

DETERMINATION FOR SEASONAL HIGH WATER TABLE
Method Used:
Depth observed standing in observation hole: \qquad inches \qquad Depth to soil mottles: \qquad inches
-Depth to weeping from side of observation hole: \qquad inches \qquad Groundwater adjustment \qquad ft Index Well \#- \qquad Reading Date \qquad Index well level \qquad Adj.factor \qquad Adj.Groundwater level \qquad

$$
\begin{aligned}
& \% \\
& \text { lutamery }
\end{aligned}
$$

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for
Norfolk and Suffolk Counties, Massachusetts

Contents

Preface 2
Soil Map 5
Soil Map. 6
Legend 7
Map Unit Legend 8
Map Unit Descriptions 8
Norfolk and Suffolk Counties, Massachusetts 10
422B-Canton fine sandy loam, 0 to 8 percent slopes, extremely stony. 10
602-Urban land, 0 to 15 percent slopes 11

aNヨפヨา d甘W
Custom Soil Resource Report

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
422B	Canton fine sandy loam, 0 to 8 percent slopes, extremely stony	1.1	
602	Urban land, 0 to 15 percent slopes	$\mathbf{1 3 . 3 \%}$	
Totals for Area of Interest		$\mathbf{8 . 5}$	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.
A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the
development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Norfolk and Suffolk Counties, Massachusetts

422B-Canton fine sandy loam, 0 to 8 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2w818
Elevation: 0 to 1,180 feet
Mean annual precipitation: 36 to 71 inches
Mean annual air temperature: 39 to 55 degrees F
Frost-free period: 145 to 240 days
Farmland classification: Not prime farmland

Map Unit Composition

Canton, extremely stony, and similar soils: 80 percent
Minor components: 20 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canton, Extremely Stony

Setting

Landform: Moraines, hills, ridges
Landform position (two-dimensional): Summit, shoulder, backslope
Landform position (three-dimensional): Nose slope, side slope, crest
Down-slope shape: Convex, linear
Across-slope shape: Convex
Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi-0 to 2 inches: slightly decomposed plant material
A - 2 to 5 inches: fine sandy loam
Bw1 - 5 to 16 inches: fine sandy loam
Bw2 - 16 to 22 inches: gravelly fine sandy loam
2C-22 to 67 inches: gravelly loamy sand
Properties and qualities
Slope: 0 to 8 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high
(0.14 to $14.17 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to $1.9 \mathrm{mmhos} / \mathrm{cm}$)
Available water supply, 0 to 60 inches: Low (about 3.4 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: B
Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

Minor Components

Scituate, extremely stony

Percent of map unit: 6 percent
Landform: Hills, ground moraines, drumlins
Landform position (two-dimensional): Summit, backslope, footslope
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Convex, linear
Across-slope shape: Convex
Hydric soil rating: No

Charlton, extremely stony

Percent of map unit: 6 percent
Landform: Ridges, ground moraines, hills
Landform position (two-dimensional): Summit, shoulder, backslope
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Convex, linear
Across-slope shape: Convex
Hydric soil rating: No

Montauk, extremely stony

Percent of map unit: 4 percent
Landform: Recessionial moraines, ground moraines, hills, drumlins
Landform position (two-dimensional): Summit, shoulder, backslope
Landform position (three-dimensional): Side slope, crest
Down-slope shape: Convex, linear
Across-slope shape: Convex
Hydric soil rating: No

Swansea

Percent of map unit: 4 percent
Landform: Marshes, depressions, bogs, swamps, kettles
Down-slope shape: Concave
Across-slope shape: Concave
Hydric soil rating: Yes

602-Urban land, 0 to 15 percent slopes

Map Unit Setting

National map unit symbol: vkyj
Mean annual precipitation: 32 to 50 inches
Mean annual air temperature: 45 to 50 degrees F
Frost-free period: 120 to 200 days
Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 99 percent
Minor components: 1 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

Parent material: Excavated and filled land
Minor Components
Rock outcrops
Percent of map unit: 1 percent
Hydric soil rating: Unranked

[^0]: ${ }^{1}$ Hantush 1967 - See Reference for Standard 3.

[^1]: ${ }^{1}$ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.
 ${ }^{2}$ For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

[^2]: ${ }^{1} 80 \%$ TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

